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Abstract—Fitts’ law and throughput based on effective measures are two mathematical models frequently used to analyze human
motor performance in a standardized pointing task, e.g., to compare the performance of input and output devices. Even though pointing
has been deeply studied in 2D, it is not well understood how different task execution strategies affect throughput in pointing in 3D virtual
environments. In this work, we examine the effective throughput measure, claimed to be invariant to task execution strategies, in Virtual
Reality (VR) systems with three such strategies, “as fast, as precise, and as fast and as precise as possible” for ray casting and virtual
hand interaction, by re-analyzing data from a 3D pointing IS0 9241-411 study. Results show that effective throughput is not invariant for
different task execution strategies in VR, which also matches a more recent 2D result. Normalized speed vs. accuracy curves also did
not fit the data. We thus suggest that practitioners, developers, and researchers who use MacKenzie’s effective throughput formulation
should consider our findings when analyzing 3D user pointing performance in VR systems.

Index Terms—Fitts’ task, Virtual Reality, Effective Throughput, Speed-Accuracy Trade-off

1 INTRODUCTION

The classic Fitts’ law task of hitting alternating targets [28] has been
used to analyze and assess user performance for pointing tasks in 2D
and also 3D, e.g., [73]. With this methodology, various input devices,
including mice [66], pens [74], styli [46] or laser pointers [55], have
been investigated in combination with different output devices, such
as monitors [71], large screens [42], mobile devices [49], physical
apparatuses [4,28], or even CAVE systems [72]. Building on decades of
research, MacKenzie’s formulation of Fitts’ law is the most frequently
used variation in Human-Computer Interaction research, see, e.g., [47]:

MovementTime(MT) = a+b∗ log2

(
A
W

+1
)
= a+b∗ ID (1)

In Equation 1, A is the target distance and W the target size. The
log term represents the task difficulty or the index of difficulty, ID. The
coefficients a and b are empirically derived via linear regression.

Apart from modeling the movement time, Fitts’ law research also fre-
quently uses a second mathematical model to analyze user performance,
namely the index of performance. One of the most well-known versions
and the one predominantly used in current Human-Computer Interac-
tion studies, is MacKenzie’s formulation for effective throughput [48],
originally motivated via Shannon’s channel capacity theorem.

Throughput =
(

IDe

MovementTime

)
(2)

In Equation 2, movement time is the task execution time and IDe
the effective index of difficulty, with accounts for the effect of the
combination of user’s accuracy and precision in ISO pointing tasks
[38]:

IDe = log2

(
Ae

We
+1

)
(3)

In Equation 3, the effective target distance Ae is the average real
distance traversed with the cursor to execute the task and We is the
effective target width, calculated as We = 4.133×SDx, where SDx is
the standard deviation of the distance between the target center and the
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selection coordinates projected onto the task axis. I.e., this is a uni-
variate formulation that does not account for deviations in the direction
orthogonal to the main task direction. SDx represents the accuracy
of the task execution [38, 50, 51], i.e., how close the selection points
are to the target center. The SDx calculation is illustrated in Fig. 1,
based on [49]. In this figure, dx is the distance on the task selection
axis and SDx is the standard deviation in the dx values. dx is calculated
as dx = (k2– j2–i2)/(2× i). To maintain comparability with 2D work
on the same topic, we used the uni-variate distribution of the selection
points [81] to characterize accuracy, which also allowed us to compare
our results directly with Mackenzie and Isokoski [50].

Fig. 1. Geometry to calculate the deviation dx along the task axis [49].

The ISO standard presents Fitts’ Law and the above-mentioned defi-
nition of effective throughput as an “evaluation method for the design
of physical input devices for interactive systems” [38]. According to
ISO 9241-411, IDe represents the task precision or “measure of the
user precision achieved in accomplishing a task” [38]. Precision here
refers to how close the selection points are to each other.

Equation 1 encodes the relationship between task execution time,
effective target size, and movement distance. Equation 2 then combines
time, precision, and accuracy into a single measure, which enables
comparison of different input and output devices, as well as human
motor performance under different conditions.

Some studies of MacKenzie’s throughput formulation questioned
the validity of the proposed model in 2D. Guiard et al.’s work [33]
demonstrated that throughput is systematically affected by task execu-
tion strategy. In follow-up work, [56] Olafsdottir’s et al.’s also asked
participants to execute the task with different execution strategies, e.g.,
“as fast as possible” or “as precise as possible”. Their results identified
that effective throughput depends on the task execution strategy. Both
these results for the speed-accuracy trade-off do not match the findings
of Mackenzie and Isokoski’s earlier work [50]. Yet, all these works
investigated only 2D pointing tasks.

More than a decade ago, research in virtual reality (VR) interaction
adopted the above-mentioned methodology to analyze mid-air user
interaction performance in 3D virtual environments(VEs) [73]. Yet,



due to the additional degrees of freedom that 3D VEs offer, a selection
task is more challenging with 3D mid-air controllers than with a 2D
device. One issue is that the original Fitts’ task involved tapping on
table surfaces [28], which means that the lack of haptic feedback in mid-
air might affect the outcome [72]. Additionally, while users interact
with a mid-air 3D input device, such as a VR controller, the system
is prone to jitter from different sources, including hand tremor and
tracking system noise. Further, such jitter is amplified with distance
in ray pointing [12], where, e.g., a small, <5° movement of a VR
controller moves the cursor 8 cm at 1 m, but 24 cm at 3 m. Thus, the
location the user points at is (naturally) different for every selection,
which, typically increases the SDx used in the throughput analysis
relative to 2D work. Additional factors, such as conflicting depth
cues [4, 6], can also play a substantial role.

Given all these issues it is not guaranteed that Fitts’ law is directly
applicable for modeling 3D movements. Several prior studies thus
proposed new versions of Fitts’ law and verified that these mathematical
models describe user movement times more accurately [4, 20, 21, 54].
However, these efforts focused solely on developing a user movement
time model, ignoring the effect of user accuracy and precision. As such,
these new models are beyond the scope of our current investigation, also
because none of them defined an appropriate throughput formulation.
Thus, we do not propose or aim to analyze a new model for 3D Fitts’
law for mid-air interaction in this work.

As previous work demonstrated that effective throughput increases
the comparability of results across studies [68], Fitts’ law and effective
throughput were used in 3D user interface studies for several purposes:
to compare the performance of input devices, to analyze the speed-
accuracy trade-off through the ISO9241-411 formula, and as a motor
performance assessment criterion, e.g., [9,10,13,15,16,18,22,25,40,63,
73–75]. All these studies assume that effective throughput is invariant.
Yet, to our knowledge, the claim of invariance of effective throughput
has not been validated for mid-air interaction before, i.e., it is unknown
if the 2D formulation is still valid and useful for systematic comparisons
in 3D. Thus, researchers still rely on 2D effective throughput measures
for 3D pointing experiments. Previous work already highlighted the
corresponding need to investigate “the variance of effective throughput
for task execution strategies in different systems” [33, 56]. To address
this gap, our current work is the first that investigates how throughput
varies in 3D selection with different task execution strategies.

To investigate the variation of user performance in VR with different
task execution strategies, we analyzed data from a previous study [14]
where participants had been asked to execute a 3D version of the
ISO 9241-411 pointing task [38] “as fast as possible”, “as precise as
possible”, or “as fast and as precise as possible”.

That previous study [14] focused solely on the effects of auditory
error feedback in 3D Fitts’ law studies for VR training systems. While
the findings, contributions, hypotheses, and research questions of their
study 2 [14] investigate how user performance varies with different
auditory error feedback under various task execution strategies, that
work did not analyze throughput in depth . The outcomes of that work
suggest that, to increase user performance, it is best to avoid using
higher frequencies in auditory feedback. Still, this previous work did
not investigate the variance of effective throughput with task execution
strategy in 3D ISO 9241-411 tasks.

Through reanalyzing the data from this previous study, we examine
the following hypothesis: Effective throughput varies for different
task execution strategies in mid-air pointing. In other words, we
do not expect to observe a throughput invariance with different task
execution strategies, as claimed by Mackenzie and Isokoski [50], but to
observe throughput variance, in line with other studies [33, 56].

We believe that the results presented here will affect how throughput
is used in studies that use ISO 9241-411 to compare input devices and
in VR training systems or simulators.

2 PREVIOUS WORK

2.1 Mid-Air Interaction Studies with Effective Throughput
Interaction with a virtual hand and ray casting are the two most fre-
quently used mid-air 3D interaction techniques in VR [2, 44]. While

the virtual hand technique is mostly used for peri-personal space in-
teraction, i.e., objects within arm’s reach, up to approximately 70 cm
from the user, ray casting enables users to also interact with virtual
objects beyond arm’s length [4, 10, 25]. Both techniques are widely
used as baselines in VR and Human-Computer Interaction studies and
frequently compared in VR systems [26].

Mid-air interaction in immersive systems can differ from interaction
in the 2D plane, e.g., on desktop monitors, as targets can be arranged
in 3D. Still, much work on 3D pointing has used planar arrangements
of targets. If the plane on which the targets are faces the user, i.e., if it
is orthogonal to the view direction, the task is (generally) equivalent to
a 2D Fitts’ law task and Fitts’ law holds well, which also increases the
comparability with 2D work. If the (visual) depth, i.e., the distance from
the user, changes substantially between subsequent targets, research
for 3D pointing with the virtual hand technique has shown that the 2D
formulation of Fitts’ law does not hold, potentially due to the effect of
conflicting depth cues [4]. Yet, this is still an active area of ongoing
research [20, 21, 54, 73].

2.2 Fitts’ Law and Throughput as Assessment Criterion

Previous work showed that Fitts’ law and throughput based on effective
measures can be used to assess human performance with different input
devices in VR. For instance, Teather and Stuerzlinger [74] examined
participants’ pointing performance in a fish-tank VR system with this
measure. Recent studies also used throughput to analyze user perfor-
mance in immersive VR training systems and simulators [9, 18, 77].

Batmaz et al. identified that individuals can benefit from prioritizing
different criteria when they learn a new task and that novices should
prioritize precision over speed to improve their learning curve [7]. This
was achieved through active instruction, i.e., telling participant to be
faster or more precise [7].

3 USER STUDY

For the main analysis, we use a subset of data from previously published
work [14]. Such re-use of data [14] is frequent in various research fields,
e.g., [27,35,78,79]. Although we use data from a prior study, we aim to
keep the current paper self-contained to facilitate reader understanding.
Thus, we also explain all relevant details of the user study that was used
to collect the data, specifically the participant characteristics and the
procedure. Since we only re-analyze a subset of the data here, there
were no changes to the apparatus or procedure. Thus, all the information
about the apparatus and procedure for the user study is the same as
in previous work [14]. The ethics approval for the original study also
permitted the reuse of the data collected from the participants.

The subset of the data used here was collected in a mid-air pointing
experiment where the participants were asked to focus on different task
execution strategies with different auditory error feedback conditions
[14]. For the current paper, and after we had verified that the subset
was not affected by ordering effects (see the supplemental material)
we only used the data from the constant auditory feedback condition
of that experiment, i.e., the condition that matches previous work on
throughput in terms of feedback.

3.1 Participants

18 participants took part in the study (17 right-handed and one left-
handed, 10 male and 8 female) with an average age of 29.31±4.29.
The experiment was conducted remotely and data collected only from
participants that had a computer able to run Steam VR under Windows
10. Following the suggestions of Steed et al. for remote studies [70],
headsets were running with at least 90 Hz. Seven participants used
an HTC Vive Pro, six a HTC Vive, three an Oculus Quest, and two
participants used an Oculus Rift. Eleven participants reported that they
play computer games 0-5 hours weekly, four 5-10 hours, and three
participants 10-20 hours. Eleven participants reported that they use
3D CAD systems between 0-5 hours weekly and seven 5-10 hours.
Each individual was asked to adjust the inter-pupillary distance of their
headset before the experiment.



3.2 Procedure

Participants started the experiment by filling a demographic question-
naire, followed by an explanation of the procedure. In the virtual
environment, participants were sitting in the middle of an empty room
with pictorial depth cues, as shown in Fig. 2.

The experiment used an ISO 9241-411:2012 [38] task with 11 gray
targets placed in a circle, with the circle center positioned at the partici-
pants’ eye level. The first target was randomly chosen by the system
and participants executed the task either in a clockwise or counter-
clockwise direction, also randomly chosen by the software. During
task execution, and while the cursor was inside the target, we changed
the color of the sphere temporarily to blue for visual feedback. If the
cursor was inside the orange-colored, i.e., desired, target when selection
occurred, the target’s color was changed to green to provide positive
feedback to the participant. On the other hand, when the cursor was
outside the target during selection, the target’s color was changed to red
and a sound played to provide error feedback. During the experiment,
participants used their dominant hand to control the cursor with the
VR controller. To avoid the negative consequences of the Heisenberg
effect [17], i.e., where the user applies a mechanical force on the button
to select a target and that force moved the physical controller and thus
the cursor, we instead asked participants to press the space button on a
keyboard with their non-dominant hand to indicate selection.

Targets were placed either 0.4 or 1.5 m away from the subjects for
the virtual hand and ray casting conditions, respectively, and partici-
pants could easily see all targets in their field of view. These distances
match the task IDs across the two input conditions and are also sim-
ilar to previous work on mid-air selection [10]. Participants selected
each target with the cursor associated with the VR controller with two
different selection techniques, virtual hand (Fig. 2(a)) and ray casting
(Fig. 2(b)). To eliminate diplopia, i.e., potential double-vision in the
virtual hand condition, the 1 cm “cursor” sphere was placed 3 cm above
the VR controller. In the ray casting condition, the cursor at the end of
the ray was always in the same plane where targets were positioned, i.e.,
1.5 m away from the user. Participants selected targets at 0.4 m with
the virtual hand technique and at 1.5 m with the ray casting technique.

Subjects performed the experiment with three different task execu-
tion strategies. In the first condition, participants were asked to per-
form the experiment “as fast as possible,” i.e., to perform the task while
focusing only on their task execution time. In the second one, subjects
were asked to perform the experiment “as precisely as possible”, i.e., to
focus only on precisely selecting the targets while ignoring speed. As
the third condition, participants were asked to perform the experiment
“as fast and as precise as possible”, i.e., to focus both on their speed and
precision simultaneously. All previously mentioned motor performance
training studies used one or more of these three task execution strategies,
which makes our choice of task execution strategies directly relevant to
motor performance training [1, 23, 24, 29, 36, 37, 43, 58, 59, 61, 65, 69].
Finally, instructions for the current task execution strategy were ver-
bally stated by the experimenter at the beginning of the each round of
pointing trials for each condition.

To further assist participants in keeping track of the current strategy,
the current task execution strategy was shown as floating text behind
the targets during the experiment. The experimenter also monitored
each participants’ performance over a video link and tried to ensure that
participants followed the current task execution strategy through spoken
feedback. For instance, if a subject was repeatedly making errors in
the “as precise as possible” condition, the experimenter encouraged the
participant to slow down and to focus on precision.

To vary the index of difficulty (ID), three different target sizes (1.5,
2.5, and 3.5 cm) and two different target distances (12.5 and 25 cm)
were used, resulting in 6 unique IDs between 2.19 and 4.14. These
target sizes and distances match other 3D pointing work [4, 8] and
follow Gori et al.’s study [32], who recommended linearly increasing
sizes. To cancel potential learning effects, the selection technique and
task execution strategy factors were counterbalanced with a Latin
square design.

(a) (b)

Fig. 2. Illustration of task color scheme and selection techniques. The
current target is shown in orange, blue is used for highlighting the target
that the cursor currently collides with. A correct selection then counts as
a “hit” and is shown in green, while “misses” are shown in red. Instances
when the cursor is inside the target with the (a) virtual hand and (b) ray
casting conditions.

3.3 (Remaining) Experimental Design

As mentioned above, the previous work used different auditory feed-
back conditions [14], but we investigate here only the data for the
constant auditory feedback condition from that experiment. Conse-
quently, we analyzed all dependent variables only for the remaining
data (and thus the subset of the experimental design in terms of inde-
pendent variables) to investigate the impact of effective throughput with
an ISO 9241-411 task. For the full previous experimental design [14],
please refer to the supplementary material.

For the data analyzed here, we effectively looked at a two-factor
within-subjects design with three different task execution strategies
(3TES = as fast as possible, as precise as possible, and as fast and as
precise as possible) and two selection techniques (2ST = virtual hand
and ray casting), comprising a 3TES ×2ST design.

We analyzed the measured task execution time (seconds), error rate
(%), and effective throughput (bits/s) of the participants. As previous
work has shown that, compared to Ae, effective target size has a more
significant effect on the throughput results [45], we also analyzed the
SDx data to investigate accuracy. Further, to ensure comparability
with previous work [50, 56] and when analyzing the data for effective
distance and target width, we used the distance between the selection
point and the target as measured within the target plane. Other VR
studies had used the same method to compute throughput, e.g., [25,74].

In total, we analyzed the data of 3TES ×2ST ×6ID× 11 repetitions
= 396 trials for each subject.

4 RESULTS

The data for the (reduced) experimental design was analyzed using
two-way repeated measures (RM) ANOVA in SPSS 24. We used
Skewness (S) and Kurtosis (K) for normality analysis and considered
data as normally distributed when the S and K values were within ±
1.5 [34, 52]. When the data was not normally distributed, we used
ART [80]. We applied Huynh-Feldt correction when the ε was less
than 0.75. For brevity, we only report significant results. We used the
Bonferroni method for post-hoc analyses. We first analyzed the results
of the two-way RM ANOVA, followed by the separate interaction
techniques, and finally the one-way interactions.

4.1 Two-way interactions

We found significant interactions for time (F(2,34) = 17.879, p < 0.001,
η2 = 0.513), throughput (F(2,34) = 16.066, p < 0.001, η2 = 0.486),
and standard deviation of selection points (F(2,34) = 29.6, p < 0.001,
η2 = 0.635) between task execution strategy and selection techniques.
These results are shown in Fig. 3(a), (b), and (c). We further analyzed
the throughput results with the effective target distance (Ae) and did
not find a significant interaction (S = -0.05, K = -1.96, F(2,34) =
1.002, p = 0.378, η2 = 0.056), as shown in Fig. 3(d). According to
these results, subjects were significantly faster and their throughput
was significantly higher with the virtual hand selection technique with
each task execution strategy. However, when they executed the task



“as precise as possible”, we did not observe a significant difference
between ray casting and virtual hand in terms of accuracy.

(a) (b)

(c) (d)

Fig. 3. Interaction of task execution strategy and selection technique for
(a) time, (b) throughput, (c) accuracy and (d) effective target distance.

Detailed Analysis per Selection Technique In a detailed anal-
ysis for the virtual hand interaction technique, we looked only at the
data for that condition and further analyzed the effect of task execu-
tion strategy. For virtal hand, throughput (S = 0.41, K = 0.11) was
normally distributed. Time (S = -0.27, K = 0.27) and SDx (S = 0.3,
K = -0.6) were normal after log-transformation. We found significant
interactions of the task execution strategy on time (F(2,34) = 159.76,
p < 0.001, η2 = 0.904), error rate (F(2,34) = 64.784, p < 0.001,
η2 = 0.811), throughput (F(2,34) = 73.958, p < 0.001, η2 = 0.813),
and SDx (F(2,34) = 82.114, p < 0.001, η2 = 0.868). These results are
shown in Fig. 4.

Focusing only on the data for the ray casting technique, error rate (S
= 0.98, K = 0.09) and throughput (S = 0.07, K = -0.19) were normally
distributed. Time (S = 0.17, K = -0.46) and SDx (S = -0.05, K = -0.35)
were normal after log-transformation. Here we also found significant
interactions of task execution strategy on time (F(2,34) = 76.00, p <
0.001, η2 = 0.817), error rate (F(2,34) = 54.967, p < 0.001, η2 =
0.764), throughput (F(2,34) = 45.58, p < 0.001, η2 = 0.728), and SDx
(F(2,34) = 53.214, p < 0.001, η2 = 0.758). These results are shown in
Fig. 5.

According to detailed analysis results for each interaction technique,
participants exhibited a higher throughput with the “as fast as possible”
task execution strategy. The rest of the results are similar to the findings
shown in Fig. 6.

4.2 One-way interactions

The results of the one-way ANOVAs are illustrated in Fig. 6 as means
and standard error of means, with the statistics listed in a compact form
in Table 1.

Time The dependent variable time was not normally distributed
(S = 1.18, K = 1.83). According to the results in Table 1 and Fig. 6(a),
participants were significantly faster with the “as fast as possible” task
execution strategy. Moreover, individuals were significantly faster with
the virtual hand technique, Fig. 6(e).

(a) (b)

(c) (d)

Fig. 4. Detailed task execution strategies results for virtual hand interac-
tion technique: a) time, b) error rate c) throughput, and d) SDx.

(a) (b)

(c) (d)

Fig. 5. Detailed task execution strategies results for ray casting interaction
technique: a) time, b) error Rate c) throughput, and d) SDx.

Table 1. One-way RM ANOVA results

Task Execution
Strategy

Selection
Technique Index of Difficulty

Time
F(2, 34) = 143.654,

p < 0.001, η2 = 0.894
F(1, 17) = 49.697,

p < 0.001, η2 = 0.745
F(5, 85) = 138.989,

p < 0.001, η2 = 0.891

Error rate
F(1.47, 24.95) = 76.876,
p < 0.001, η2 = 0.819

F(1, 17) = 14.618,
p < 0.001, η2 = 0.462

F(5, 85) =76.418,
p < 0.001, η2 = 0.818

Throughput
F(2, 34) = 72.271,

p < 0.001, η2 = 0.810
F(1, 17) =155.945,

p < 0.001, η2 = 0.902
F(3.711, 63.084) =22.816,

p < 0.001, η2 = 0.573

SDx
F(2, 34) = 239.694,

p < 0.001, η2= 0.934
F(1, 17) = 239.694,

p < 0.001, η2 = 0.934
F(5, 85) = 44.306,

p < 0.001, η2 = 0.723



Error Rate The error rate variable was normally distributed (S =
1.19, K = 0.97). According to the results in Table 1, participants made
significantly more errors with the “as fast as possible” task execution
strategy and fewer errors with “as precise as possible,” Fig. 6(b). More-
over, participants made significantly fewer errors with the virtual hand
selection technique, Fig. 6(f).

Throughput The throughput variable was normally distributed (S
= 0.33, K = 0.46). According to the results in Table 1 and Fig. 6(c), we
observed a significant difference between task execution strategies, with
significantly higher throughput appearing for the “as fast as possible”
task execution strategy. Furthermore, subjects’ throughput significantly
increased with the virtual hand selection technique, Fig. 6(g).

Standard deviation SDx The standard deviation dependent vari-
able was not normally distributed (S = 3.31, K = 18.95). According to
the results in Table 1, subjects’ accuracy significantly decreased with
the “as fast as possible” task execution strategy as seen in Fig. 6(d).
Moreover, participants’ accuracy significantly increased with the virtual
hand condition, Fig. 6(h).

4.3 Detailed Speed-Accuracy Trade-off analysis
We analyzed the data in the same way as MacKenzie and Isokoski [50].
We first normalized the SDx and movement time measurements and then
plotted the data for all participants. As in MacKenzie and Isokoski’s
Figure 8 [50], and for clarity, we plot only the data points for the
speed-emphasis and precision-emphasis conditions, see Fig. 7.

In Fig. 7, the blue curve shows constant throughput across different
movement times and SDxs. The figure also illustrates that, e.g., with
an increase in movement time by 20%, the SDx needs to drop by
approximately 40% to yield the same throughput.

The non-linear regression results for Fig. 7 identified an R2 value
of 0.26 for the fit. Separate fits for ray casting and virtual hand con-
ditions exhibit R2 = 0.48 and R2 = 0.45, respectively. Unlike the data
shown in Figure 8 of the MacKenzie and Isokoski [50], it is thus not
possible to observe throughput invariance in our data, neither visually
nor quantitatively.

4.4 Fitts’ Law analysis
The results for the index of difficulty (ID) in Table 1 show that time,
error rate, throughput, and SDx all significantly vary with the task
difficulty. When we fit the data for time with Equation 1, the linear re-
gression results showed that the “as precise as possible” task execution
strategy can be modelled as MT = 0.08 + 0.82 * ID, R2 = 0.89, “as fast
as possible” as MT = 0.07 + 0.16 * ID, R2 = 0.96, and the “as fast and
as precise as possible” task execution strategy can be modelled as MT =
0.08 + 0.22 * ID, R2 = 0.91. These results are shown in Fig. 8(a). Simi-
larly, the results for ray casting and virtual hand selection techniques
are shown in Fig. 8(b), with MT = 0.07 + 0.24 * ID, R2 = 0.91 and MT
= 0.11 + 0.19 * ID, R2 = 0.92, respectively. As can be observed from
Fig. 8, the task execution time increases with higher task difficulty.

5 DISCUSSION

In this work, we analyzed 3D mid-air selection performance with a
Fitts’ ISO 9241 [38] task with three different task execution strategies:
as fast, as precise, and as fast and as precise as possible.

Before analyzing the results, we empirically verified that participants
were successfully following the task execution instructions. When we
looked at data for individual participants, we did not observe strong
outliers or other indications that behaviours around speed-accuracy
trade-off vary fundamentally across people. Based on the significant
differences between conditions, it seems that the participants readily un-
derstood the difference in the execution strategies. Our results confirm
that subjects were indeed faster with “as fast as possible”, while they
were slowest with the “as precise as possible” task execution strategy.
The error rate results similarly supports this observation. The time
results in Fig. 4 and Fig. 5 also show that participants executed the task
based on the given feedback.

The results for our study show a higher error rate for the “as fast as
possible” execution strategy. We also observe that the SDx results are

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. Task execution strategy results for (a) time, (b) error rate, (c)
throughput, and (d) accuracy. Selection technique results for (e) time, (f)
error rate, (g) throughput, and (h) accuracy.

higher for both interaction techniques with this strategy. Even though
one could expect confounding results for these dependent variables,
Mackenzie and Isokoski already highlighted that “it is well known that
behaviour is more erratic when humans act with haste [41]” [50].

From a statistical point of view, one could argue that the invari-
ance of the throughput hypothesis can always be shown to be false; a
big enough sample size could almost always lead to statistically sig-
nificant differences [53]. However, the study did not feature a large
number of participants nor a large number of pointing motions (18
participants, 7128 pointing trials). In comparison, Olasdottir et al. [56]
used 16 participants and 6000 trials. Similarly, in MacKenzie’s effec-
tive throughput study [50], there were 18 participants and 5400 trials.
This means that the studies have comparable number of participants
and trials. Furthermore, our results for effective throughput on task
execution strategy exhibit a high effect size, which indicates a strong
effect and thus also that the probability of arriving at the same result



(a) (b)

(c)

Fig. 7. Changes in speed (relative MT) and accuracy (relative SDx) with
constant throughput for all participants, across a) all conditions, b) only
ray casting and c) only virtual hand.

(a) (b)

Fig. 8. Fitts’ Law results for movement time for (a) task execution strategy
and (b) interaction technique.

in a replication study is high. In addition to the statistical results, we
also point to the relative speed-accuracy trade-off plots in Fig. 7, as
these figures directly illustrate that throughput changes with different
task execution strategies. The R2 values for each interaction condition
across participants are also low.

Our results match outcomes from previous work [10, 25] in that
subjects are faster, more precise, and exhibit higher throughput with the
virtual hand. Since the objects were closer to the user with the virtual
hand, one might conclude that it was easier to select targets, but we note
that the IDs for both conditions were the same. We believe that the rea-
son behind this outcome is that ray casting is more prone to (rotational)
jitter [12], which can negatively affect user performance in terms of
time, error rate, and throughput. Furthermore, we also speculate that
the conflicting depth depth cues in current VR HMDs decreased the
interaction performance, as already identified in previous work [4, 6].
In additional, more detailed analysis for each interaction technique,
we were unable to identify information that had “disappeared” in the
averaging.

Switching to angular width and amplitude measures naturally
changes the data shown in Fig. 8. Yet, after converting the widths
and distances to the angular domain based on [42], we still see an ID
range of 2.2-4.1, similar to previous work, and also a similar difference
between interaction techniques. Thus, our findings on task execution

strategies for mid-air pointing seem to hold regardless if we run the
statistics via linear or angular measures. Still, we deliberately chose
not to use the angular formulation to keep the comparability with 2D
work on the same topic high.

5.1 Outcomes and Potential Impact of the Work

The results of our work point to three major outcomes. The first one is
that our results contribute to the discussion around MacKenzie’s [50]
and Olafdottir’s [56] results with a study involving mid-air pointing.
Our work thus also extends the psycho-motor literature for Fitts’ law.
The second potential impact concerns the use of ISO 9241-411 in a
VR study, to analyze user performance with physical input devices in
interactive systems. The third outcome concerns using the ISO 9241-
411 task within VR motor performance training systems. We discuss
the details for each of the three main direct outcomes of our work for
VR applications in the following subsections.

5.1.1 Comparison with Mackenzie’s and Olafsdottir’s results

MacKenzie and Isokoski’s [50] and Olafsdottir et al.’s [56] previous
work both used 2D setups with 2D input devices in their experiments.
As mentioned before, their results cannot be assumed to automati-
cally hold for mid-air VR systems. When we analyzed the results for
throughput, we found that the “as fast as possible” task execution strat-
egy had the highest throughput results for mid-air selection. Yet, unlike
MacKenzie and Isokoski’s findings [50], our results are in line with
Olafsdottir et al.’s previous work [56]. Moreover, the results in Fig. 7
show that participants’ performance does not follow a constant speed-
accuracy trade-off curve. The variability in the speed-accuracy trade-off
can be visually observed through the lack of a match between the data
and the curve in Fig. 7 and through the low R2 values. These findings,
i.e., that throughput performance is task execution dependent for
mid-air pointing, support our hypothesis.

Overall, our results show that MacKenzie’s effective throughput
model (Equation 3) depends on the task execution strategy for VR
mid-air interaction methods, i.e., it is not invariant. When we analyzed
virtual hand and ray casting technique results separately to investigate
differences in the influence of the interaction technique on throughput
invariance, we did not find significant results. Yet, if the participants
executed the task precisely with ray casting, they were able to reach the
same level of accuracy as with the virtual hand technique; however, this
took more time and the individuals’ performance in terms of throughput
decreased. This is where our results clearly demonstrate the presence
of a speed-accuracy trade-off in 3D pointing. On the other hand, and
matching previous outcomes for 2D pointing [56], our results confirm
that this issue does not pose an obstacle for the use of effective through-
put to evaluate the design of novel input devices in 3D VR systems.
However, the question of the (in)variance of effective throughput still
requires more research, at least for 3D mid-air pointing.

5.1.2 Implications for ISO 9241-411 mid-air pointing studies

Our work also questions the application of ISO 9241-411 standards for
effective throughput assessment in mid-air interaction. The results of
our work support the findings of Olasdottir et al. [56] and Gori et al. [32]
in terms of the (effective) throughput being task execution strategy
dependent. However, our findings do not reveal the possible cause for
the difference with Mackenzie and Isokoski’s results [50]. One potential
explanation for the dependency of the throughput measurement on
task execution strategy in 3D mid-air pointing could be the technical
limitations of the VR systems, such as jitter [11, 12], which means that
future research is needed to explore this issue.

Participants still had to position the VR controller in (visual) depth
to select targets in the virtual hand condition in the ISO 9241-411 task.
Similarly, with the ray casting method, all controller depth movements
had also a potential impact on the position of the cursor. Even though
the task here used a 2D planar arrangement of targets facing the user,
i.e., a task where pointing is typically well-modeled by the 2D formula-
tion of Fitts’ law, participants thus still had to control all 3D aspects of
their hand movements to position the controller correctly.



While ISO 9241-411 [38] standardizes pointing evaluation and
throughput calculations, one can question why, as researchers, we
should be bound to this standard. The ISO standard was created about
20 years ago and mostly follows Mackenzie’s published work [48, 50].
Since then, other researchers have expressed different alternatives. For
example, in the standard, We is defined as 4.133 SDx, where SDx is the
standard deviation of movement endpoints in the movement direction.
The factor of 4.133 has been shown to be arbitrary by Gori et al. [30].
Morever, Wobbrock et al. [81] showed that bi-variate formulations for
SD could be used for 2D scenarios. Since the ISO 9241-411 task is
(currently) used to assess the user performance for mid-air studies in
VR, we invite researchers to further analyze the appropriateness of
effective measures to characterize pointing performance in 3D.

Given our results, we suggest that, when using the ISO 9241-411
task to evaluate user performance in 3D user interfaces, authors (at
least) mention the task execution strategy they used in their work. Since
the effective throughput is not speed-accuracy invariant, the results are
affected by the strategy, which might impact the reproducibility of a
study. Here, we point out that various 3D pointing studies [19, 39, 57,
67, 76] all used effective throughput in their work but did not share the
task execution strategy with the reader. We speculate that the authors
of these studies may have considered throughput to be invariant of the
task execution strategy. Yet, the findings of our work point out that
sharing the task execution strategy is necessary.

5.1.3 Task Execution Strategy and Implications for VR Training

Overall, our results identify that asking participants to focus on different
task execution strategies affects their speed, precision, and accuracy.
This outcome also indicates that it is possible to use such strategies to
affect longer-term training outcomes for users.

In this paper, “active feedback” refers to the experimenter verbally
reminding the participants when they were not following the current
task execution strategy. This feedback was given more or less im-
mediately, e.g., when participants slowed down too much, they were
encouraged to go faster, or when they made too many errors, they were
asked to slow down and be more precise. Some motor performance
training studies, such as [1, 29, 36, 61, 65] asked participants to execute
the task “as fast as possible“ i.e., exactly the same instruction as one
of the conditions in the experiment. A few studies, such as Sprague et
al. [69] or Dresp-Langely [24], asked participants to execute the task
“as precise as” possible. A larger set of studies [23,37,43,58,59] asked
participants to execute the task “as fast and as precise as“ possible.
Based on the fact that all this other work used only these three task
execution strategies, we relied on data for these three conditions and
observed clear performance differences with these strategies, which
also posits sufficient evidence to contradict the findings of MacKenzie
and Isokoski [50].

When MacKenzie and Isokoski [50] identified constant throughput,
they also mentioned that participants were less precise when they got
faster. However, they based this insight only on a single experimental
session. Yet, learning is a complex cognitive process that is still not
fully understood. For instance, previous work on the speed-accuracy
trade-off showed that cognitive tasks in Fitts’ law studies can increase
the mental fatigue when participants are asked to preserve task success
rates independently of the index of difficulty as the task duration in-
creases [64]. The implications of this is that the design of a VR training
system can alter the motor performance of trainee. Throughput invari-
ance across varying task execution strategies would lead to constant
throughput results. Even thought this seems irrelevant for specific tasks
that require either a focus on accuracy, e.g., surgery, or speed, e.g.,
sports, Batmaz et al. showed that a trainee first must focus on the preci-
sion rather than the speed to learn a motor task well [7]. In this case,
effective throughput can only be increased with training that focuses
on precision. While such a claim still require further investigation, we
speculate that further research on effective throughput with different
users in different application areas can help us to understand how we
can use throughput as an assessment criterion for VR training systems.

When analyzing the interaction between ray casting and the virtual
hand technique, we saw no difference for the “as precise as possible”

task execution strategy in terms of accuracy. Further analysis showed
that the effective distance is not significantly different for the ray casting
and virtual hand conditions. Even though this was an expected outcome
based on previous work [31, 33, 45, 50, 56], our work thus confirms
that effective distance has a negligible effect on effective throughput.
Specifically, participants’ accuracy in the ray casting method reached
their accuracy with the virtual hand method when subjects executed the
task “as precise as possible”. However, this effect is not directly visible
in the overall throughput results, since the subjects were overall faster
in the virtual hand condition. Yet, we do not know if these results are
an outcome of the interaction techniques or the target distances used
in our study. Participants selected targets 1.5 m away from their head
position with ray casting, which is beyond arm’s reach. Thus, these
results require further research to reveal whether the target distance or
the technique affects results more.

5.2 Limitations
Our work here focuses on how different task execution strategies affect
user throughput performance in mid-air pointing. While we investigated
the three main task execution strategies used in most previous work, we
acknowledge that an investigation of more fine-grained, intermediate
task strategies [56] might be a good topic for future work.

We did not focus on comparing user performance of the virtual hand
and ray casting pointing techniques, since their differences are well-
known. Here we point out that related work [18] already looked not
only at the selection techniques but also at their interaction.

Participants used the space bar on the keyboard to select targets. This
selection method eliminates the impact of the “Heisenberg effect” on
the collected data, i.e., addresses a potential experimental confound [17].
However, this interaction method does not always match how users
interact with a virtual environment in application scenarios. Thus,
future work should verify if and how the “Heisenberg effect” affects
the speed-accuracy trade-off.

The experimental data we used investigated a limited range of IDs,
between 2.19 and 4.14. This range was previously used in similar
mid-air pointing studies, such as [4, 5, 11, 15]. Nevertheless, even
though the ID range was limited, the results of this work still identified
a user performance difference for different task execution strategies.
Yet, MacKenzie and Isokoski’s effective throughput study [50] only
investigated a single ID, which could be a possible explanation of the
difference between their, Olasdottir et al.’s [56], and our results. This
topic should be investigated in future work.

Previous studies on the effect of verbal feedback on motor perfor-
mance showed that such feedback can improve user performance [3,60].
However, as Puddefoot et al. states “it should not be assumed that the
effect of verbal feedback will be a consistent in every situation.” [62].
After all, verbal feedback was based (only) on the experimenter’s obser-
vations and intended to encourage participants to reach their maximum
speed or accuracy. As such, it was not intended to train participants.
Also, the number of times active verbal feedback was given during the
experiment was not recorded, which might be necessary to investigate
VR training methodologies. The impact of verbal feedback on motor
performance of participants in an ISO 9241-411 task should thus be
studied further.

In this paper, we used data from a study that used a local university
participant pool. The average age of the participants was 29.31 ±4.29
years. With other participant groups, such as an older population, it is
possible that the outcomes may vary.

6 CONCLUSIONS AND FUTURE WORK

In this work, we examined mid-air VR pointing performance with three
task execution strategies with the ray casting and virtual hand selection
techniques. Results showed that in contrast to the work that defined
throughput and ISO 9241-411, throughput is dependent on execution
strategy. This limits its applicability and thus throughput needs to
be further investigated before it can be used as a motor performance
assessment criterion in situations where the speed-accuracy trade-off
plays a key role, such prioritizing training strategies [7] or individual
analysis [82]. We hope that our results are helpful for practitioners,



developers, and researchers when they aim to assess user performance
of their interaction techniques in their VR systems.

In the future, we plan to examine the application of throughput as
an assessment criterion for VR training systems and simulators. We
are also planning to follow up on the effects of the “Heisenberg effect”
on the speed-accuracy trade-off. Moreover, we want to investigate if
it is possible to use throughput as a learning assessment criterion and
plan to evaluate its effect on the skill transfer from VR to real-world
applications.
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