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ABSTRACT

Previous research on eye-hand coordination training systems has
investigated user performance on a wall, 2D touchscreens, and in
Virtual Reality (VR). In this paper, we designed an eye-hand coordi-
nation reaction test to investigate and compare user performance in
three different virtual environments (VEs) – VR, Augmented Reality
(AR), and a 2D touchscreen. VR and AR conditions also included
two feedback conditions – mid-air and passive haptics. Results
showed that compared to AR, participants were significantly faster
and made fewer errors both in 2D and VR. However, compared to
VR and AR, throughput performance of the participants was sig-
nificantly higher in the 2D touchscreen condition. No significant
differences were found between the two feedback conditions. The
results show the importance of assessing precision and accuracy in
eye-hand coordination training and suggest that it is currently not
advisable to use AR headsets in such systems.

Index Terms: Human-centered computing—Human Com-
puter Interaction (HCI); Human-centered computing—Virtual Re-
ality; Human-centered computing—Pointing; Human-centered
computing—Touch screens

1 INTRODUCTION

Among the many applications for virtual reality (VR), training sys-
tems to improve the performance of sports athletes have recently
attracted attention. One of their advantages is that a particular sit-
uation (e.g., a ball with a certain trajectory) can be reproduced as
often as needed, which is difficult to do in the real world [14], but a
key factor in sports training to enable athletes to master a particular
technique. Also, the virtual environment (VE) can be easily tuned
to cover diverse training situations depending on the needs of the
trainee/trainer and it is easy to collect and analyze a variety of data
in such a controllable environment [55]. Moreover, training systems
reduce the possibility of the trainee getting injured [33] and a num-
ber of skills can be trained effectively at home with them, saving
time and money, and increasing productivity.

Previous studies utilized several different VR technologies, such
as CAVEs and head-mounted displays (HMDs), [56] as training
systems for a variety of sports including, but not limited to: ski-
ing [68], American football [33], basketball [17], and cycling [64].
Although VR technology has some limitations and not all types of
training are suitable [55], many agree that VEs can provide great
advantages for sports training and that current state-of-the-art tech-
nology can be effectively applied to train several different athletic
skills [17, 33, 64, 68]. However, in a survey of 227 athletes, Gradl
et al. [29] found that just 10.5% had used a VR headset in the past.
Nonetheless, 43.1% believed that this technology has potential to
improve their performance.
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The eye-hand coordination task, also known as a reaction test, is
one of the nine psychometric tasks in the Nike SPARQ system, also
called the “Sensory Station” (Nike, Inc., Beaverton, Oregon) – a tool
to enhance athletes’ perceptual and visual–motor skills [78]. In this
task, trainees have to touch a sequence of randomly activated targets
as fast and accurately as possible, improving both their reaction
time and accuracy. Beyond being implemented on real 2D surfaces
(e.g., a wall) [21, 60] or 2D touchscreens [24, 78], this eye-hand
coordination task was also explored in VR with and without passive
haptic feedback [13].

Current 2D screen-based eye-hand coordination training systems
do not change the dimensions of the grid and/or targets and do
not record hit positions within a target. Thus, it is not possible
to measure throughput and to use precision and accuracy as an
assessment criterion. This motivated us to implement a new version
of a 2D eye-hand coordination training system that expands the
capabilities of previous systems correspondingly. Beyond this, VR
and AR systems allow users to interact with mid-air objects, which
approaches the challenge of catching a ball in mid-air at different
(depth) distances. VR/AR systems are also more affordable and
portable compared to a large 2D touchscreen on a sturdy stand.

Previous work [13] implemented an eye-hand coordination test
in VR to investigate user performance in terms of reaction time,
error rate, and throughput in a Fitts’ law task. Participants had to
select a sequence of virtual targets with the VR controller or with
their dominant hand, either in mid-air or on a real wall (i.e., with
passive haptic feedback). The authors found that the mid-air VR
controller achieved the best performance, but also that users took
longer, made more errors, and had the least throughput with passive
haptic feedback compared to when the targets were in mid-air.

Yet, several previous studies [1, 50, 63] reported the opposite
outcome, i.e., that haptic feedback results in substantially better user
performance. One reason for Batmaz et al.’s [13] results could be
the fact that users were not able to see the real wall in the VR HMD,
which potentially affected their performance.

AR technology has been used to train climbers in bouldering [19].
However, to the best of our knowledge, there are no studies on using
AR HMDs for sports training and specifically none that investigated
user performance in the eye-hand coordination task.

In this work, we investigated the following research questions:
Can AR and VR headsets be used in eye-hand coordination training
systems? How does user performance vary between AR and VR
headsets? Does mid-air interaction in VR and AR headsets decrease
user performance due to the lack of physical support, which is
provided by real world eye-hand coordination training systems?

To answer these questions, we extended Batmaz et al.’s [13]
work and designed an eye-hand coordination training system to
investigate user performance in three different conditions: VR, AR,
and as baseline, a 2D touchscreen. For the VR and AR conditions,
participants performed the same experiment both in mid-air and
with passive haptic feedback. As in our previous work [13] we
use Fitts’ law and throughput, which incorporates speed, precision,
and accuracy. This approach has the potential to better inform



trainers and athletes on how to improve their skills, including how
to approach the fundamental speed-accuracy trade-off. Given that
VR/AR systems are not only cheaper, but can also be deployed in
locations where large touchscreens are not available, our approach
gives athletes more opportunities to train, including at home.

2 PREVIOUS WORK

2.1 Eye-Hand coordination training in sports
In many sports activities, such as volleyball or football, one of the
main objectives of traditional training is to improve reaction time.
For example, in volleyball, a smash is a technical skills to master,
which involves a complex movement that demands good accuracy
and putting the ball right on target. There are many factors that affect
this skill and some of them are eye-hand coordination, arm swing,
accuracy, and timing in hitting the ball [84]. Across many sports, a
variety of approaches use eye-hand coordination training systems
to train athletes. The effectiveness of these systems is already well-
studied. Harpam et al. [32], Poltavski and Biberdorf [59], Wang et
al. [78] and Krasich et al. [39] are a few examples of studies that
used 2D touchscreens for eye-hand coordination training. In all of
these studies, a grid consisting of 8 columns (68.6 cm) and 6 rows
(44.5 cm) with equally spaced 48 mm diameter circles were used
to assess only the reaction/movement time of the users. Several
previous studies have even verified the skill transfer from eye-hand
coordination training systems to sports performance [32, 40, 59].

2.2 Performance assessment in sports training
Research on user performance assessment with sport training sys-
tems suggests that, for efficient assessment of trainees, it is appro-
priate for trainers to consider essential factors, such as accuracy,
precision, and error rate, in addition to time. This extra information
enables trainers to provide more precise feedback to trainees, which
maximizes the efficiency of training and minimizing the duration
of the training period [7, 11, 18, 79]. To distinguish more accurately
which factors affect user performance in sport training systems, we
can take advantage of the data provided by VR systems, also because
they provide a high(er) sample rate [14]. In VR, user performance
is influenced by how human perceive the environment [20]. Re-
searchers have shown that human abilities can be improved through
different skill training methods, including acuity tests [27], contrast
tests [42], and stroboscopic exposure [2]. Previous work also applied
these different types of training to athletes and observed that the
athlete’s performance increased significantly [16, 23].

2.3 Fitts’ Law
Fitts’ law [26] models behavior of the entire human receptor-neural-
effector system in pointing tasks. Equation 1 shows the Shannon
formulation [51]:

Movement Time = a+b∗ log2

(
A
W

+1
)
= a+b∗ ID (1)

In Equation 1, the movement amplitude is A and W is the target
size, while a and b are constants, empirically derived via linear
regression. The index of difficulty (ID) is calculated through the
logarithmic term, indicating the task difficulty.

According to ISO 9241-411:2012, throughput is defined as the
“rate of information transfer when a user is operating an input device
to control a pointer on a display” [35], and we calculated throughput
accordingly:

Throughput =
(

IDe

Movement Time

)
(2)

In Equation 2, movement time is the time between initiation of
the movement and the selection of the target. The effective index

of difficulty (IDe) is defined as the “measure of the user precision
achieved in accomplishing a task” [35]. We calculated the effective
index of difficulty as follows:

IDe = log2

(
Ae

We
+1

)
(3)

In equation Equation 3, Ae is the effective distance, i.e., the actual
movement distance to the target, which incorporates how accurately
participants performed the task, and We represents the effective target
width, which is the distribution of selection coordinates calculated as
We = 4.133 ∗ SDx, where SDx is the standard deviation of selection
coordinates along the task axis. SDx is used to measure the precision
of the task performance [35, 52, 53].

Beyond precision and accuracy measures, we also measure error
rate, which is the rate of correctly selected targets.

Fitts’ law, Equation 1, is the most well-known model to analyze a
user’s pointing performance. In this equation, the user’s movement
time depends on the target size and distance between targets. As
a previous analysis of this relationships shows, target sizes have a
significant effect on the average movement time [49]. In this study,
we used Fitts law to assess user performance.

2.4 Effects of Visual Feedback

Motor learning can benefit from concurrent visual feedback in VR
simulators. Advantages of using (real-time) visual feedback have
been shown in several studies, e.g., for learning complex motor
tasks [54]. Previous research on visual feedback in VR showed
that the error percentage decreases through highlighting objects,
while increasing selection time and throughput [72]. For example,
highlighting targets through changing their color during interaction
has significant effects. Besides, user can be provided with other
visual cues in the VE, such as shadows [41], motion parallax [69],
and texture [34] to obtain a stronger spatial comprehension of the
VE, which may also increase selection performance.

2.5 Passive Haptic Feedback

Passive haptic feedback in VR involves approaches where the feed-
back to the user is provided by physical real-world objects that are
not under the control of the computer system [48]. While the user
is not able to see the peripheral environment due to the VR headset,
passive haptics increase the sense of presence in VR and such feed-
back provides tactile stimulation cues from the environment, which
increase user performance while interacting with VEs [37, 62, 76].
Low-cost and low mechanical complexity are the main advantages
of passive haptics over active haptics. A study on the effect of using
a static surface for passive haptic in VE experiments illustrated that
it improves user performance [48].

2.6 Effects of Haptic Feedback in VR

Mid-air interaction allows users to interact with a VE without any
physical support, and many studies have compared this to haptic
feedback in VR [74, 75, 77, 82]. Results showed that the subjects’
initial skill level influences which feedback is more suitable for max-
imizing the learning of discrete time-dependent motor tasks. For
targeting tasks Less-skilled subjects benefitted more from haptic
guidance, while visual feedback was more advantageous for more
skilled subjects. Interestingly, haptic feedback seems to promote
learning in a time-critical tracking task, while visual feedback de-
creases performance in this specific context, independent of the task
difficulty and subjects’ initial skill level [54]. But this result does
not hold for other tasks. Still, no previous work has assessed if, in
terms of Fitts’ law throughput, the combination of haptic and visual
feedback is better than visual feedback alone.



2.7 Effects of Haptic Feedback in AR
Combining AR and haptic interaction enables users to interact with
digital information in the real world through sight and touch. Visuo-
haptic augmented reality (VHAR) enhances reality through haptic
interaction and enables users to interact more precisely. For this
it is important to provide a realistic experience to the AR user, by
precisely calibrating all components of the VHAR system (external
trackers, cameras, haptic devices) and the spatial relations between
them [22].

3 MOTIVATION AND HYPOTHESES

Previous research has shown that eye-hand coordination training
systems can be used in VR and Fitts’ law can be used to assess
human performance in VR [13]. However, in our knowledge, there
is no previous work that compared eye-hand coordination training
systems across VR, AR, and 2D screens.

Current conventional 2D touchscreen-based eye-hand coordina-
tion training systems, such as the SPARQ [57], do not change the
grid or target dimensions and do not record hit positions within a
target. Thus, it is not possible to measure throughput in a meaningful
way and use precision and/or accuracy as assessment criteria. This
motivated us to develop a new 2D screen eye-hand coordination
training system that allows us to change the ID of the task, which
already expands previous work. Beyond this, VR and AR systems
allow users to interact with mid-air objects, including tasks that are
similar to the challenge of catching a ball at different depth dis-
tances. Since VR/AR eye-hand coordination training systems are
well-integrated, it is easy to collect synchronized high-rate data. The
systems are also more affordable and portable compared to large
2D screens. This motivated us to compare VR and AR eye-hand
coordination training system with a conventional 2D screen.

Based on the review of previous work and current conventional
eye-hand coordination training systems, we developed the following
hypotheses for our work:

H1. Users exhibit better performance in conventional 2D eye-
hand coordination training systems compared to VR and AR.
Limitations imposed by HMDs, such as the vergence and accommo-
dation conflict [6], presence [65, 66], and field of view (FOV) [46]
do not affect user performance in real life. Based on this previous
work, we expect subjects to perform better with the 2D screen. To
our best knowledge, our work is also the first to analyze Fitts’ law
and the associated (effective) throughput measure for conventional
2D screen eye-hand coordination training systems.

H2. Similar to VR, AR HMDs can be used for training sys-
tems. Previous studies showed that there is no difference between
AR and VR headsets for pointing tasks [8]. Thus, we also do not
expect such differences in terms of user performance in this study.

H3. Passive haptic feedback improves user performance. Bat-
maz et al. [13] showed that user performance significantly decreases
when subjects hit a surface in VR. On the other hand, user perfor-
mance increases when a static surface is used in a VR system [15,48].
Here, we changed the interaction method from hitting a surface,
where the user’s palm has to physically interact with the wall, to
touching it, where only the tip of the user’s index finger has to phys-
ically interact with the wall, which also improves the accuracy and
precision of the targeting movement. Batmaz et al. [13] explained
the performance decrease in the VR headset with a lack of agency:
since subjects were not able to see their hands in real-life, they did
not hit the real surface as hard and fast as they could. By replicating
their experiment in AR, we enable users to see their hand, which
enables us to investigate this potential explanation.

4 USER STUDY

4.1 Subjects
We recruited 15 subjects (6 female) from the local university, with
an average of 26.6 ± 3.85 years. All subjects were right handed

and they used their dominant hand to execute the task. The headsets
were adjusted to match the inter-pupillary distance of each individual.
Table 1 shows further information on participant demographics.

Table 1: Participant demographics.

Daily

Mobile

Usage

(Hours)

Number

of

subjects

Daily

Computer

Usage

(Hours)

Number

of

subjects

Watching

3D

Movie

(times/

Monthly)

Number

of

subjects

Weekly

Mobile

Game

Playing

(Hours)

Number

of

subjects

Weekly

Computer

Game

Playing

(hours)

Number

of

subjects

Weekly

3D

CAD

usage

(hours)

Number

of

subjects

Weekly

VR

Games

Playing

(hours)

Number

of

subjects

0-2 3 0-2 1 0-2 14 0-5 14 0-5 12 0-5 11 0-5 15

2-4 5 2-4 3 2-4 1 5-10 1 5-10 3 5-10 3 5-10 0

4-6 4 4-6 2 4-6 0 10-15 0 10-15 0 10-15 1 10-15 0

6-8 2 6-8 8 6-8 0 15-20 0 15-20 0 15-20 0 15-20 0

+10 1 +10 1 +10 0 +20 0 +20 0 +20 0 +20 0

4.2 Apparatus

We used a PC with i7-5890, 16 GB RAM, and RTX2080 graphics,
with Unity3D software. For this study we chose two headsets with
roughly similar specifications:

VR headset: for the VR condition we used an HTC Vive Pro
headset (Fig. 1(a)) with a resolution of 2880x1600 pixels and 90 Hz
refresh rate. The (diagonal) FOV of the device is 110°.

AR headset: For the AR condition we chose a Meta 2 headset
(Fig. 1(b)) with 2560x1440 resolution and 60 Hz refresh rate. The
FOV of the AR HMD is 90°, larger than most other AR headsets.
Since the tracking algorithm of the Meta 2 was not robust enough
to track head position while looking at a black flat surface, a HTC
Vive tracker was attached to the AR Headset. This tracks the AR
HMD with comparable quality as the VR condition. We also added
a carton sheet on top of the AR HMD to reduce interference between
the tracking devices.

Hand tracking: For tracking hand movements, we attached a
Leap motion to both VR and AR headsets. For the AR condition,
the Leap motion was attached at the front of the AR HMD to both
disable and replace Meta’s hand tracking hardware. Using external
hand tracking also eliminated the potential confound of differences
in terms of hand tracking accuracy between AR and VR conditions.
Since we showed a virtual hand skeleton in the VR condition to
help subjects perceive the position of their hand, we also used the
same visualization in the AR condition. This also helped users to
understand the position of the virtual cursor at the tip of their index
finger. Additionally, we added a small spherical virtual cursor (1 cm
diameter) on top of the index finger of the virtual hand to enable
the accurate and precise selection of objects in both VR and AR
conditions.

2D Screen: A 85” 4K LED 120 Hz Samsung TV (Fig. 1(c)) was
used for the 2D Screen baseline condition. To detect touch input, a
PQ Labs G5 touch frame was attached to the TV.

Calibration: For the 2D Screen condition, we tape-measured
all displayed target dimensions and distances to confirm that they
matched the desired real world sizes.

For the AR and VR conditions, two HTC Vive controllers were
attached to the real wall to precisely measure its position and to
enable us to replicate it in the VE. Before each participant, we veri-
fied the matching. This allowed participants to get precise passive
haptic feedback from the wall. We also used the distance between
the trackers to match real and virtual world distances.

Since we did not use the internal head and hand tracking of the AR
HMD, we manually calibrated the display and hand positions of the
AR headset. We superimposed virtual and real HTC Vive controllers
to adjust the calibration of the AR condition. Subjects were thus
able to see their virtual hands over their real ones. Further, we also
measured the dimensions of a 28x32x18.5 cm box in the real world
and the VE to ensure that distances match in the AR condition at
different heights. Before starting each experiment, the experimenter



checked that the two real world controllers were superimposed by
their virtual representations.

(a) (b) (c)

Figure 1: Study conditions: (a) VR HMD (b) AR HMD and (c) 2D
Screen.

4.3 Procedure
Before the experiment, we asked participants to fill a demographic
questionnaire, after which the experimenter explained the procedure
to the participants. Subjects performed the experiment in three
different Environments: VR, AR, and 2D Screen. Also, for the VR
and AR conditions, we used two Haptic feedback levels: passive
haptic feedback (Fig. 2(a) and Fig. 2(d) respectively) and mid-air
(Fig. 2(b) and Fig. 2(e) respectively). A screenshot of the VR scene
is shown in Fig. 2(c) and for AR in Fig. 2(f). We replicated the
experimental setup and virtual environment used by Batmaz et al.
[13]. For passive haptic feedback, we used a wall surface covered
with a dense, thick pile of polypropylene (similar to a rug, but
dampens sound). While the Leap Motion cannot track the user’s
hand in contact with normal surfaces, this specific material allowed
us to detect hand positions reliably even when the user touched the
wall. The standing area for participants was pre-defined, located
at the middle of the tracking zone (for both VR and AR), with
an offset for the mid-air conditions, or within arm’s reach in front
of the middle of the screen (for 2D Screen). At the end of the
experiment, participants filled a post-questionnaire where they chose
their preferred Environments and Haptic feedback conditions.

(a) (b) (c)

(d) (e) (f)

Figure 2: Environments and Haptic feedback conditions. First row
shows VR (a) passive haptic feedback condition, (b) mid-air condition
and (c) scene screenshot. Second row shows AR (d) passive haptic
feedback condition, (e) mid-air condition and (f) scene screenshot.
Since the Leap Motion covered the camera of the AR HMD, we could
not capture a shot of the virtual scene in the AR condition.

The main task in the experiment was to select (push) targets
(yellow buttons) in the VE as fast and as accurately as possible with
the tip of the dominant hand’s index finger. Participants were placed

in front of a plane of 6x6 gray spheres with 8 cm spacing. We used
three different target sizes 3T S: small (1.6 cm), medium (3.2 cm),
and large (4.8 cm). When the cursor sphere on the participants’
fingertip was in contact with the target button, the color changed to
blue to provide visual feedback that there was contact with the button.
As mentioned above, we used the VR controllers’ coordinates to
position the virtual wall. When the cursor at the end of the tip of the
virtual index finger collided with the virtual wall (or touched the wall
in the real world), we detected a “selection” in the passive haptic
feedback condition. In the mid-air condition, where we moved the
target buttons 20 cm away from the wall, we also moved the virtual
wall with them and used the same technique as in the passive haptic
feedback condition for selection. The first target sphere was selected
randomly among all the spheres. To vary the task and to limit the
Fitts’ law index of difficulty (ID) between 1.94 and 4.39, the next
selected target was randomly determined relative to the previous
target, chosen among a predefined list of Target Distances 4T D, 16,
22.6, 24, and 32 cm. After the correct selection of a target, the color
of the button turned green, to indicate a successful selection/“hit”. If
a participant “missed” the target, i.e., hit outside the target, the target
button’s color changed to red and a beep sound was played. For
the conditions that used passive haptic feedback, participants had
to push the 3D sphere buttons a specific distance until they touched
the wall in front of them and that button turned green. With 2D
Screen, participants were told to touch the yellow buttons on the
screen. The selection of targets continued until all of the available
objects were selected. When there were no other available targets
within the set of Target Distances, we finished the trial. We did not
allow the algorithm to re-select the same target in a set of trials.

We varied user movement by using 8 different directions: North
(N), North West (NW), West (W), South West (SW), South (S),
South East (SE), East (E), and North East (NE). For the North,
South, East, and West directions, the software randomly selected the
second, third, or fourth target in that direction (corresponding to 16,
24, or 32 cm), if that button was still “free” (gray color). For instance,
“N3” signifies that next target was going to be three buttons above
the current one. For the diagonal directions, we always selected the
second target in one of the diagonals, corresponding to 22.6 cm. In
total we had 16 factor levels for 8 different directions: North West
(NW2), South West (SW2), South East (SE2), North East (NE2),
North (N2, N3 and N4), West (W2, W3 and W4), South (S2, S3 and
S4), and East (E2, E3 and E4).

To familiarize the participant with the experiment, they were first
given a set of practice trials, until they indicated they were ready for
the main study. Also, before the beginning of the experiment, we
adjusted the systems to match the height of participants and adjusted
the headset and the Leap Motion sensor accordingly.

4.4 Experimental Design

In this study, we used a two-factor design with two Environments
(2V E = VR and AR) conditions with two Haptic feedback condi-
tions (2F = passive haptic and mid-air), comprising 2V E ×2F = 4
conditions. We additionally used another environment, a 2D Screen
condition, as baseline. These (2×2+1 =) 5 conditions were coun-
terbalanced across our 15 subjects using a Latin square design. To
vary the ID, we varied target sizes, as mentioned in the procedure
section, using three levels for each combination. Based on the dif-
ferent values for 4T D (which varied within the trial set) and 3T S,
we evaluated 10 unique IDs between 1.94 and 4.39. We measured
time (seconds), error rate (%), and effective throughput (bits/s) of
the subjects for data analysis. Since we terminated a set of trials
when there were no more targets that fulfilled the ID restriction, we
did not collect a fixed number of data points in every set. In each
set of trials, we collected approximately 29-30 data points (average
29.48) for a total average of 1275 data points per subject. In total,
we collected 19133 data points. Each main experimental condition



took about 8-10 minutes and subjects were instructed to rest at least
5 minutes between conditions while an experimenter verified the
calibration of the next condition in the system.

5 RESULTS

Before data analysis, we explored the data and verified that we had
collected (approximately) the same amount of data points for each
experimental condition from each subject. Below, we show the
average of collected data from each subject and condition as quantile
box-plots in Fig. 3(a) and Fig. 3(b), respectively.

(a) (b)

Figure 3: Quantile box-plots showing minimum, 2.5%, 10%, 25%,
median, 75%, 90%, 97.5% and maximum for average number of target
selection for each (a) participant and (b) experimental condition.

We analyzed the results using repeated measures (RM) ANOVA
with α = 0.05 in SPSS 24. We deleted “double click” data (0.96%),
where the next target was selected without hitting another button.
The data was not normal, even after log-normal transformation, so
we used ART [83] before RM ANOVA for each dependent variable,
as ART enables us to examine interaction effects between factors,
which standard non-parametric tests cannot. We used the Sidak
method for post-hoc analyses. In figures, *** is used for p < 0.001,
** for p < 0.01, and * for p < 0.05.

5.1 Experimental Conditions Results
In first part of our analysis, we analyzed the data across all five
experimental conditions, 2D screen, VR passive haptic feedback,
AR passive haptic feedback, VR mid-air, and AR mid-air conditions
for time, error rate and throughput. These results are shown in
Table 2 and Fig. 4.

Table 2: 2D, VR, and AR passive haptic and mid-air comparison

Experimental
Conditions ID Experimental

Conditions x ID

Time F(4, 56)=54.35
p<0.001

F(9, 126)= 92.28
p<0.001

F(36,504) =8.32
p<0.001

Error rate F(4, 56)=15.59
p<0.001

F(9, 126)= 76.9
p<0.001

F(36,504) = 2.775
p<0.001

Throughput F(4, 56)=126.56
p<0.001

F(9, 126)=12.50
p<0.001

F(36,504) = 5.20
p<0.001

The result of the post-hoc tests fairly clearly identify 3 different
groups: 2D-screen, both AR conditions, and both VR conditions.
Given this grouping, we proceeded to analyzed subsets of the results
for Environments and Haptic feedback in more detail.

5.2 Detailed Analysis Results for Environments
First, we analyzed only the passive haptic feedback data for the
VR and AR conditions and the 2D Screen to the compare user
performance across various environments for eye-hand coordination
training. Results are shown in Table 3 and Fig. 5.

5.2.1 Time results
The results for the time dependent variable are shown in Table 3 and
Fig. 5(a). Subjects were slower with the AR condition compared

(a)

(b)

(c)

Figure 4: Analysis across all five experimental conditions for (a) time,
(b) error rate, and (c) throughput.

Table 3: 2D, VR, and AR passive haptic comparison

Environments ID ID x Environments

Time F(2,28)=49.59
p<0.001

F(9,126)=65.075
p<0.001

F(18, 252)=8.359
p<0.001

Error rate F(2,28)=17.25
p<0.001

F(9,126)=61.40
p<0.001

F(18,252)=4.70
p<0.001

Throughput F(2,28)=141.08
p<0.001

F(9,126)=8.69
p<0.001

F(18,252)=5.46
p<0.001

to VR and 2D Screen. For time, there was no significant difference
between VR and 2D Screen conditions.

5.2.2 Error rate results
The results for the error rate dependent variable are shown in Table 3
and Fig. 5(b). The error rate was higher in AR compared to VR and
2D Screen conditions. There was no significant difference between
VR and 2D Screen conditions for error rate.

5.2.3 Throughput results
The results for the throughput dependent variable are shown in Ta-
ble 3 and Fig. 5(c). Throughput performance of the subjects was
significantly higher in the 2D Screen condition, compared to VR and
AR. Moreover, subjects throughput was lowest in the AR condition.

5.3 Detailed Analysis Results for Haptic Feedback
In this third part of our analysis, we compared only the VR and AR
conditions to analyze the difference between passive haptic feedback
and mid-air interaction in detail. The results are shown in Table 4.

Haptic feedback was not significant (N.S.) for the time, error
rate, and throughput dependent variables. Moreover, two-way RM
ANOVA results confirmed that there was no significant interac-
tion between Environments and Haptic feedback conditions for
time (F(1,14) = 1.554, N.S.), error rate (F(1,14) = 1.061, N.S.) and
throughput (F(1,14) = 1.157, N.S.).
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Figure 5: Environments condition analysis for (a) time, (b) error rate,
and (c) throughput.

Table 4: Feedback results for VR and AR

Environments Feedback ID

Time F(1,14)=113.46
p<0.001

F(1,14)=0.009
NS

F(9,126)= 74.76
p<0.001

Error rate F(1,14)=29.24
p<0.001

F(1,14)=0.89
NS

F(9,126)=50.36
p<0.001

Throughput F(1,14)=163.79
p<0.001

F(1,14)=0.94
NS

F(9,126)=7.12
p<0.001

5.4 Task repetition
We also analyzed the performance improvement of participants
across repetitions. At the beginning of the experiment, we informed
subjects that we are collecting data for sports training applications
and asked subjects to select targets as fast and as accurately as
possible. We did not give users performance feedback during the
experiment.

As Fig. 6 shows, subjects were getting faster (Fig. 6(a)), made
fewer errors (Fig. 6(b)), and their throughput increased with each
repetition (Fig. 6(c)) in the VR condition. However, while subjects’
error rate increased with each repetition in AR, their throughput and
time did not change.

(a) (b) (c)

Figure 6: Task repetition results for (a) time, (b) error rate, and (c)
throughput.

5.5 Movement Analysis
To simplify the presentation of the results, we analysed the data
for movement direction, i.e., into which direction participants

moved their hand, and movement distance, i.e., the distance be-
tween two targets, separately. In one-way RM ANOVA results
for movement direction and distance, we found that all dependent
variables had a normal distribution. Only for movement direc-
tion, error rate (χ2(27) = 54.99, p<0.01,ε = 0.638) and throughput
(χ2(27) = 41.87, p<0.05,ε = 0.584) both violated sphericity. For
these two dependent variables analyses, we used Huynh-Feldt cor-
rection since ε < 0.75. The results are shown in Table 5 and Fig. 7.

According to these results, subjects were slower and made
more errors with targets that involved longer distances, i.e., 32 cm
(Fig. 7(b), Fig. 7(d)), and for movements in the upward direction, i.e.,
North (Fig. 7(a), Fig. 7(c)). Moreover, subjects throughput decreased
significantly when the movement involved only short distances, i.e.,
16 cm (Fig. 7(f)). Since effective throughput is calculated as IDe
divided by movement time, this shows that subjects effectively per-
formed a task with higher difficulty. Based on the IDe, Equation 3,
our results in Fig. 7(e) and Fig. 7(f) show that movements N2, S2,
E2, and W2 are representative of larger selection distances and better
accuracy (due to lower SDs).

Table 5: Movement Analysis

Movement
Direction

Movement
Distance

Time F(3, 42)=117.66
p<0.001

F(7, 98)= 9.52
p<0.01

Error rate F(3, 42)=4.085
p<0.05

F(4.47, 62.55)= 4.09
p<0.01

Throughput F(3, 42)=212.62
p<0.001

F(5.98, 83.743)=16.186
p<0.001

5.6 Subjective results
To evaluate user perceptions of the different conditions, we applied
a 7-point Likert scale in our survey. 8 subjects preferred the VR
condition, 7 preferred 2D screen and none preferred AR. In the inter-
views after the experiment, most of the reasons given for preferring
VR and 2D screens over the AR environment were due to the fact
that subjects felt it was easier to use these systems (3 participants
for VR and 2 for 2D Screen), they felt they were more accurate (2
participants for VR), they were more in control of their movements
(2 participants for 2D Screen), and 2D screens seemed to be the more
realistic solutions to them since they did not have to wear a headset
(3 participants). 3 participants chose VR over 2D screen, because
it was more similar to how they interact in the real world, i.e., the
motions included interaction in depth. 2 participants chose the 2D
screen over VR, because it afforded a larger FOV. In our AR/VR
experiment conditions, 9 participants preferred to select the target
with passive haptic feedback and the remaining 6 preferred mid-air
interaction. Reasons behind preferring touching the wall given were
“less tiring” (3 participants), having an increased “sense of reality”
(3 participants) or “agency” (1 participant), “better perception of
depth” (1 participant) or “easier interaction” (1 participant). For
those who preferred mid-air interaction the reasons were being “fast
and flexible” (3 participants) or “less tiring” (3 participants).

None of the participants found it very easy to interact with the
virtual targets in the AR passive haptic interaction mode (1-very
easy, 7-very difficult, the median result was 4-neutral), and none of
them found it very easy or easy to interact with virtual objects in
the AR mid-air interaction mode (median: 5-somewhat difficult). 8
out of 15 participants expressed that it was easy to select targets in
the VR passive haptic condition, (the median result was 3-somewhat
easy). Besides, in the VR mid-air interaction condition with virtual
targets, 9 participants thought it was easy (the median result was
3). 7 participants found it very easy to interact with the target grid
in 2D Screen (the median result was 2-easy). In comparison with
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Figure 7: Time analysis for (a) movement direction and (b) movement
distance. Error rate analysis for (c) movement direction and (d) move-
ment distance.Throughput analysis for (e) movement direction and (f)
movement distance.

mid-air selection, 5 participants thought using the wall did not have
any effect on their selection time. Half of the participants (7 out of
15) expressed feeling slight fatigued after the experience (1- I feel
rested, 7- I feel extremely fatigue, median: 5).

5.7 Fitts’ Law Analysis
Since the number of target directions and distances were randomly
selected, we first show the histogram of collected data points across
IDs in Fig. 8(a). According to these results, we collected more than
1000 data points for each ID. For ID=2.58, we collected the most
(3779) and for ID=4.39 the least (1082). For Fitts’ law analysis, we
averaged these data points for each ID.

Fitts’ law linear regression results were MT = 0.37 + 0.154 * ID,
R2 = 0.91 for the 2D Screen, MT = 0.39 + 0.136 * ID, R2 = 0.9 for
VR and MT = 0.24 + 0.308 * ID, R2 = 0.96 for the AR condition.
These results are shown in Fig. 8(b).

(a) (b)

Figure 8: (a) Histogram of collected data points for each ID, (b) Fitts’
Law results for Environments.

6 DISCUSSION

In this work, we studied eye-hand coordination training systems in
VR and AR and compared them with the conventional approach,
which uses 2D touchscreens.

Results showed that there is no significant difference between 2D
Screen and VR conditions in terms of time and error rate. However,
throughput results were significantly higher for 2D Screen than
VR, as expected by H1. These results also match previous results
comparing real-world and virtual world interaction [6, 7]. The effect
of different depth cues or stereo deficiencies, such as the vergence-
accommodation conflict, are some of the potential explanations
for this difference. Our result also confirms that there is (still) a
difference between real-world 2D screen systems and VR and AR
application, however our results reveal that especially VR systems
have strong potential for eye-hand coordination training systems.

The throughput result for different Environments also shows
the importance of accuracy, precision, and throughput assessment;
without looking at the throughput, i.e., looking only at time, error
rate, and subjective preferences, one could come to the conclusion
that there is no difference between 2D screens and the VR conditions
for eye-hand coordination training systems. However, the previous
literature, such as [6, 7, 36, 45, 71], showed that user performance is
different in VR. As the previous literature suggests that precision and
accuracy play a key role in user performance assessment [9, 10, 12],
throughput – which takes time, precision, and accuracy into account
– should be applied within training systems and simulators.

In the AR condition, subjects were slower, made more errors,
and their throughput decreased compared to the VR and 2D Screen
conditions. We further investigated this user performance decrease
for each subject and individual condition, but could not find any
definite explanation for the decline in performance. Moreover, none
of the subjects preferred the AR condition to VR or 2D Screen. Yet,
the results of the Fitts’ law analysis confirm that Fitts’ law can be
used to assess user performance more accurately in AR eye-hand
coordination training systems. Thus, our hypothesis H2 is supported.
Nevertheless, practitioners have to consider the performance differ-
ence between these conditions.

By eliminating differences in head and hand tracking quality
through external systems, VR and AR systems were roughly similar.
The chosen AR and VR headsets had approximately the same speci-
fications. Thus, we believe that the difference between AR and VR
conditions was caused by the drawbacks and limitations of current
AR headsets. For example, a 60 Hz refresh rate might not be good
enough to render fast hand movements in AR.

Another issue that might have affected user performance could
be the sheer number of devices involved in the AR condition - Meta
2, HTC Vive tracker, and the Leap motion. Although we built our
setup to keep the differences between the AR and VR conditions to
a minimum, any issues with the combination of these systems could
affect the user performance. For the hand-based interaction condition
we only added a Leap Motion, which is today a fairly standard add-
on for VR/AR systems. We acknowledge that using a different
software/hardware platform could cause performance differences.
E.g., the AR system’s native tracking was not stable enough for a
reasonable Fitts’ law study and to enable a fair comparison (one
of the goals of our work). Even though subjects did not complain
about the weight of the tracker, it could have decreased the subject’s
comfort, which could reduce presence and affect user performance.
For broad deployment some engineering effort would be needed to
improve on this.

A third potential explanation for the difference of the AR and VR
conditions could be the rendering of the virtual objects in the real
world. We showed a virtual hand skeleton to increase the perception
of the user’s hand position. As mentioned in the study description,
we chose to show virtual hands to help users perceive the position
of their hand in space. This also helped subjects to understand



the position of the cursor at the tip of their index finger. Subjects
might also have expected to be immersed either completely in VR
or in reality. The composite of both options might have created
minor visual distractions due to slight mis-registration, which might
have decreased their performance as they needed to align the virtual
targets and their real hand. Or the integration with the external
tracking system was inferior to the tracking in the VR condition.
This might have created slight delays in AR, which might have
confused participants when watching their hand closely.

Another explanation of the results could be perceptual-cognitive
issues [44]. For example, Swan et al. showed that users can overesti-
mate distances in AR [70]. Even though we carefully matched real
and virtual world distances in AR and VR, any distance perception
issues in the AR condition might have affected user performance.

In the second part of the data analysis, we compared user per-
formance with and without passive haptic feedback. Our results on
Haptic feedback showed that using a hard surface for passive haptic
feedback does not affect user performance. In further analysis, we
also did not find any significant interaction between Environments
and Haptic feedback, which suggests that being able to see their
hand in the real world does neither increase nor decrease user perfor-
mance. One potential reason that our results does not match previous
work by Batmaz et al. [13] is that the interaction style we used in
this study was different. While Batmaz et al.’s work showed that
passive haptic feedback significantly decreases user performance
when they “hit” the wall with their palms, in this study participants
“touched” the wall with the tip of their index finger, which seems to
have reduced the user performance difference between the passive
haptic feedback and the mid-air condition. However, as suggested
by previous literature, e.g., [15], passive haptic feedback did not
increase user performance compared to the mid-air condition. Thus,
we can partially accept our hypothesis H3.

We also highlight that interaction style significantly affects user
performance and thus should be considered as an independent vari-
able in sports training systems. For instance, while the BATAK
system [60] requires “hitting” objects, the Nike SPARQ system [57]
requires “touching” objects on a 2D screen. None of these systems
record how accurately the athlete hit the targets. As our study mea-
sures accuracy and precision (as well as throughput), our results
present a significant improvement over such systems.

We also explored performance measurements with Fitts’ law in
mid-air VR and AR eye-hand coordination training systems. Before
applying VR and AR systems for real world training applications, the
usability of these systems had to be validated with quantitative results
and compared to the previous literature on Fitts’ Law. Thus, as in
previous studies, we recruited our subjects from the local university,
none of whom had an interest or professional experience in sports.
While our questionnaire included only an option for “0-5 hours”, we
found that most of our participants, 12 out of 15, do not play 3D
VR games weekly, which means that the frequency of VR/3D game
usage was low. Also, previous work showed that user performance
changes with expertise level [55]. Thus, we believe that the results
of our study might vary with different expertise levels, but can also
state that our results are directly applicable to novice athletes. The
literature on skill transfer between VR simulators and the real world
is unfortunately still inconclusive for sports training [30, 55, 85].
Thus, there is a need to first understand the properties of 3D VR
training systems, before fully investigating them with athletes. As
mentioned in the motivation section, VR and AR systems allow users
to interact with objects in mid-air, which can be used to simulate
important parts of sports tasks, such as catching a ball at different
depth distances. Also, users can easily repeat various scenarios in
their training. Hence, VR and AR systems have strong potential
for sports training systems. We also believe that before using VR
or AR training systems on athletes, we need to explore the used
systems further to identify the effect of technical differences and the

overall effect of these systems on human performance. The results of
our throughput analysis and the difference between 2D Screen and
VR conditions also supports this argument. Similarly, the detailed
investigation of passive haptic feedback in VR and AR helped us
to identify the effect of crucial feedback mechanisms for eye-hand
coordination training systems. Our work does not focus on a specific
sport nor user performance variation across different sports.

As expected, we observed a performance increase over time
during the experiment, which matches previous work on Fitts’
law [3, 28, 38, 61]. Yet, the number of trials in our work was not
large enough to analyze long-term learning. Subjects repeated each
specific set of tasks (only) three times, which was still sufficient to
analyze participants’ performance in terms of Fitts’ law.

Previous studies on Fitts’ law and human motor performance
have already investigated the effects of movement direction on user
performance, including [5,7,12,25,31,43,47,67]. The results of our
study match the outcomes of this previous literature; subjects are
slower when they move their hand upwards. Also, their movement
time increases and their accuracy decreases when they reach for
further away targets [26, 58, 73, 80, 81]. Hence, we did not analyze
movement direction further in this work.

According to the subjective results, subjects did not report sig-
nificant physical or mental fatigue after the experiment. We also
did not observe any task fatigue, which is also supported by the
7-point Likert scale results. We decreased potential task fatigue by
adjusting the height of the target platform according to the height of
each participant and by allowing users to freely position themselves
in front of the wall and 2D Screen. Further, subjects did not report
any simulator or motion sickness which could have affected their
performance, likely since the participants did not move in the VE
and they did not have to move their heads in the virtual and physical
space much, nor did we observe corresponding symptoms during
the experiment in our participants.

7 CONCLUSION AND FUTURE WORK

In this study, we investigated eye-hand coordination training system
using a Fitts’ task in VR and AR conditions and compared them
with a 2D screen-based system. We used an approach based on
throughput measurements, which incorporates speed, precision, and
accuracy. This approach can better inform trainers and athletes on
how to improve their skills, including how to approach the fun-
damental speed-accuracy trade-off. We also investigated passive
haptic feedback and mid-air interaction, in both VR and AR con-
ditions. Results showed that an AR headset significantly decreases
user performance and passive haptic feedback does not improve user
performance. Since VR and AR systems are more affordable and
easier to deploy in many locations, including at home, such systems
have great potential as sports training systems. The results of our
work can be used to inform VR and AR research, as well as lead to
new sports training systems to improve the performance of athletes.

In the future, we plan to collect data from professional athletes
who have experienced real world training and look at the corre-
sponding learning effects in VR and AR systems. We also want to
investigate skill transfer from VR/AR systems to real-world perfor-
mance. Eye-hand coordination training systems could also be used
in rehabilitation and medical research [4] and we plan to expand our
work to explore this potential avenue of applications for eye-hand
coordination training in VR and AR.
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