
User Interface Façades:
Towards Fully Adaptable User Interfaces

Wolfgang Stuerzlinger †, Olivier Chapuis ∗, Dusty Phillips † & Nicolas Roussel ∗

†Interactive Systems Research Group
Comp. Science & Engineering, York University

Toronto, Canada
wolfgang | dustyp @cse.yorku.ca

∗LRI (Univ. Paris-Sud - CNRS) & INRIA Futurs 1

Bâtiment 490, Université Paris-Sud
91405 Orsay Cedex, France

chapuis | roussel @lri.fr

ABSTRACT
User interfaces are becoming more and more complex.
Adaptable and adaptive interfaces have been proposed
to address this issue and previous studies have shown
that users prefer interfaces that they can adapt to self-
adjusting ones. However, most existing systems provide
users with little support for adapting their interfaces.
Interface customization techniques are still very primi-
tive and usually constricted to particular applications.
In this paper, we present User Interface Façades, a sys-
tem that provides users with simple ways to adapt, re-
configure, and re-combine existing graphical interfaces,
through the use of direct manipulation techniques. The
paper describes the user’s view of the system, provides
some technical details, and presents several examples to
illustrate its potential.

ACM Classification: H.5.2 [Information interfaces and
presentation]: User interfaces - Graphical user inter-
faces.

General terms: Algorithms, Design, Human Factors.

Keywords: Adaptable user interfaces.

INTRODUCTION
User interfaces are becoming more and more complex as
the underlying applications add more and more features.
Although most people use only a small subset of the
functionalities of a given program at any given time [19],
most software make all commands available all the time,
which significantly increases the amount of screen space
dedicated to interface components such as menus, tool-
bars and palettes. This quickly becomes a problem, as
users often want to maximize the space available for
the artifacts they are working on (e.g. an image or a
text document). One reason for this problem might be
that most user interfaces are still designed by software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’06,October 15–18, 2006, Montreux, Switzerland..
Copyright 2006 ACM 1-59593-313-1/06/0010 ...$5.00.

programmers today, a fact that is only slowly changing.
However, even trained interface designers cannot always
foresee how a software package is going to be used in
practice, especially if the package is used by a large va-
riety of different users. This makes creating flexible user
interfaces a major challenge.

Consider GIMP as an example. The latest version of
this image manipulation program has 22 persistent di-
alogs for managing brushes, colors, fonts, etc. Although
dialogs can be docked together in an arbitrary num-
ber of windows, this only increases the window manage-
ment overhead and increases the average distance to the
drawing tools & functions from the drawing area. Users
adapt with various strategies, such as having all dialogs
on a secondary monitor, or overlapping the drawing area
with dialogs. On the other hand, some applications use
an all-in-one window logic, which provides less flexibility
in terms of user interface layout.

One way of dealing with the growing number of applica-
tion features and the desire to optimize screen space is
to allow users or applications to customize the user in-
terface. These two concepts have been studied for some
time by the community (e.g. [17, 18]). Today, they are
most often referred to as (user-)adaptable and adaptive
(or self-adapting) interfaces [19]. Adaptive interfaces
change their appearance based on some algorithm, such
as a least-recently used criterion. One recent example
is the menus of the Microsoft Office suite. Adaptable
interfaces, on the other hand, can be configured by the
user to suit his or her own criteria. Many applications,
for example, make it possible to interactively customize
their toolbars with simple drag-and-drop operations.

Adaptive interfaces can exhibit some unpleasant side ef-
fects such as surprising the user by moving or removing
menu entries. Previous studies have also shown a de-
sire for the user to be able to control and override the
automatic system whenever needed [11]. Adaptable in-
terfaces suffer from the problem that new ‘secondary’
interfaces and interaction techniques must be added to
support the customization of the ‘primary’ interface. A

1projet In Situ, Pôle Commun de Recherche en Informatique du
plateau de Saclay

comparison of static, adaptive, and adaptable menus
showed that users could optimize their performance if
they knew about the possibility of adapting and were
able to adapt their menus with a simple interface [8].
Another interesting finding is that the adaptable user
interface did not perform worse than the other two al-
ternatives. Furthermore, participants greatly preferred
the adaptable interface to the two other alternatives,
a fact that we see as strong motivation for additional
research in this area.

While the idea of adding adaptation functionality to
user interface toolkits seems attractive at first glance, it
has the drawback that it will make the already complex
APIs of these toolkits even more complex, requiring yet
more code to be written by application programmers.
This is clearly not a positive thing and would not speed
adoption of the fundamental paradigm of adaptable in-
terfaces. Moreover, modifying the toolkits would leave
it to programmers or interface designers to decide what
can be configured and how. Yet, again, these profes-
sionals cannot necessarily foresee all potential ways of
adapting an application. Phrased differently, we believe
that users should be in control of the adaptation process,
not the original software authors.

In this paper, we present User Interface Façades, a sys-
tem designed to address this issue. The rest of the
paper is organized as follows. In the next section, we
present an overview of previous work and motivate our
research. After presenting the main ideas of User In-
terface Façades, we discuss how we implemented them.
Then we present several examples to illustrate the con-
cepts, followed by the conclusion.

MOTIVATION
Skins and themes are two of the simplest forms of user
interface customization. The notion of a skin comes
from video games such as Quake that allow players to
alter the appearance of their character and has been
adopted by many media players. Themes extend this
notion by sharing a common visual style among differ-
ent applications, as specified by the user at run time. A
skin, or a theme, can simply consist of a set of colors or
textures used by existing drawing code. It can also par-
tially or completely replace that drawing code, possibly
adding complex output modifications [7]. In addition to
the visual style of interface elements, skins and themes
can also specify the layout and to a lesser degree the be-
havior of these elements. Recent work has extended this
approach to bridge the gap between appearance and se-
mantic meaning [9, 6]. However, although these allow vi-
sual designers to customize interfaces using off-the-shelf
drawing tools such as Adobe Photoshop or Illustrator,
these systems remain out of reach for end-users who can
only choose between predefined theme options.

One of the biggest obstacles for adaptable interfaces
is that it requires a fairly substantial programming ef-
fort to add this capability to a software package. Most
user interface toolkits offer no support for implementing
adaptable interfaces. This factor has certainly hindered

the adoption of the idea of adaptable interfaces. As a
notable exception, Apple’s Cocoa toolkit provides devel-
opers with a toolbar widget that users can customize at
runtime using drag and drop operations. However, the
customization interface is far from optimal, as it does
not allow for undoing changes or reverting to previous
versions and employs a fixed window, which is inconve-
nient in many situations. Microsoft Office applications
also allow users to customize their various toolbars and
menus. But again, the customization interface has a
number of serious flaws (Figure 1).

Figure 1: Microsoft Word 2004 interface for customiz-
ing menus and toolbars. The left list contains 22 com-
mand categories. The right list shows the commands
relevant to the selected category. More than 1100
commands are available through this interface. They
can be dragged to/from menus and toolbars, but these
operations cannot be undone. Commands already in
menus or toolbars still appear in the list. The window is
about 600x500 pixels, can be moved, but not resized.

Bentley and Dourish [3] introduced an interesting dis-
tinction between surface customization, which allows
users to choose between a predefined set of options,
and deep customization, which allows them to customize
deeper aspects of a system, such as integrating an ex-
ternal translation program with a word processor. They
point out two problems that our above examples also il-
lustrate. First, the level of customization provided by
most systems lies above the functionality of the applica-
tion, rather than within it. Second, these systems often
require the learning of new languages to describe new
behaviors.

Fujima et al. recently proposed the C3W system (Clip,
Connect and Clone for the Web) to generate new HTML
documents by cloning individual HTML elements from
other documents and allowing for computation on these
elements using a spreadsheet model [10]. While this
approach supports deep customization, C3W is limited
to Web technologies and does not allow the user to
change or replace widgets nor to add new widgets to
existing documents. Hutchings and Stasko proposed
the more generic notion of relevant window regions and
suggested to add the ability to create copies of these
regions that could be manipulated as independent win-
dows [14]. Tan et al. implemented this idea in their

WinCuts system [22]. However, this system is unable
to merge several regions into a new window, which is
clearly a limiting factor. Its implementation also has
several problems that make it hardly usable on an ev-
eryday basis (e.g. it relies on periodic polling of win-
dow content, popup menus and dialog boxes appear on
the source window, etc.). Berry et al. introduced a sys-
tem that can selectively hide content based on the users’
privileges via various forms of blurring [4]. Internally,
this system works similarly to WinCuts.

Hutchings and Stasko also suggested allowing users to
remove irrelevant parts of windows [14]. The same idea
was mentioned in [21] and partially implemented (win-
dows could be cropped to a set of pre-defined shapes).
Finally, Hutchings and Stasko proposed to replicate
dialog boxes on multiple monitor configurations until
the user interacts with one of the copies [15]. In this
same paper, they concluded that window operations like
these should be implemented within the window man-
ager rather than using a separate application.

Based on the above discussion, we formulated the fol-
lowing criteria for adaptable user interface:

• Fast, simple, just-in-time customization: Users should
be able to adapt interfaces without advance planning,
whenever needed, and should be able to do this in a
fast and simple way, e.g. with direct manipulation
techniques.

• Not only global customizations, but also local ones:
Most adaptable interfaces only support global changes,
which forces users to undo them at some point.
Global/local can be interpreted in different ways (e.g.
persistent/temporary, all documents/this document).
Users should be able to specify the scope of interface
customizations. It should be possible, for example, to
customize the toolbars of an application for a specific
session only, or even for a specific document.

• Deep customization: Users should not be restricted
to a set of pre-defined options but should be able to
define new ones. Again, ‘set of options’ can be in-
terpreted in different ways, e.g. a tool set or a set
of specific locations where tools can be placed. Users
should be able to select anything on the screen, change
the way it operates (not only visual appearance), cut
it out, duplicate it, or replace it with something else.
The latter should be done in a manner that removes
the ‘old’ user interface, or at least makes it invisible.

• Cross-application customization: Interface customiza-
tions should make it possible to combine or link to-
gether different applications.

USER INTERFACE FAÇADES
This work focuses on applications with a graphical user
interface, as opposed to command-line systems. We are
more specifically interested in applications where the
interaction focus is a single or, at best, a few docu-
ment(s). In such applications a large work area dom-
inates the main window, with user interface elements
clustered around. Examples include drawing packages,
text processors, spreadsheets, etc.

A user interface façade is a user-specified set of graphical
interfaces and interaction techniques that can be used
to customize the interaction with existing, unmodified
applications. This section provides a general overview of
how users interact with such façades. Implementation
details and more specific usage scenarios follow in the
next two sections.

Copying and pasting screen regions
A basic functionality of the Façades system is the abil-
ity to copy interface components from one window to
another while maintaining a one-to-one functional rela-
tionship between the copy and the original. Using the
mouse and a specific modifier key the user can select
one or more rectangular source regions. A drag oper-
ation on these regions duplicates them. Dropping the
duplicates on the desktop puts them in a new façade
window. Façade window creation from source regions is
also accessible through a menu that pops up when one
clicks on one of the regions using the right mouse but-
ton. A new command also makes it possible to clone a
complete window through its standard window menu.

Dropping duplicated interface components onto the side
of a façade window automatically expands the façade to
make room for the new duplicate at this side. Drop-
ping components into free space inside a façade win-
dow simply adds it in that space. Duplicates can also
be dropped on any existing window, and will overlay
the dropped component over the existing content. Fig-
ure 2 shows a user incrementally constructing a façade
window by selecting widgets from three dialogs of the
GIMP application. The scenario here is that the user
wants to optimize the interface by packaging frequently
used tools in an ad-hoc way, rather than using the GIMP
developers’ pre-packaged toolsets. The upper row of im-
ages shows four selected regions in two GIMP dialogs
(displayed as semi-transparent rectangles) and the re-
sulting façade window, which contains the duplicated
regions. The lower row illustrates the addition of a fifth
duplicated component to this window.

Figure 2: Creating a façade from several GIMP dialogs.

The same source region can be used in several façades
(i.e. it can be duplicated several times), and a façade
can contain an arbitrary number of duplicates. After
a façade has been created, the user typically hides or
iconifies the source window(s) and the system transpar-
ently passes mouse movements and clicks over the façade
to the appropriate source region. Conversely, source re-
gion updates are replicated in their corresponding du-
plicates. Overlay windows such as popup menus are
correctly handled when triggered from a duplicate. The
system also transparently manages the focus and stack-
ing order according to standard window manager rules.
In effect, the behavior of a duplicate is indistinguishable
from the original source region to the user.

Parts of the above ideas have been previously presented
by Tan et al. [22] (e.g. the ability to duplicate multiple
screen regions into individual windows) and Hutchings
and Stasko [14, 15] (e.g. the ability to duplicate win-
dows). However, the ability to create new windows that
seamlessly combine multiple screen regions and the abil-
ity to paste regions over arbitrary windows are unique
to our work.

Cutting screen regions
In addition to supporting the creation of façade win-
dows, the system also allows users to create holes in
windows, via a context-sensitive menu that becomes ac-
tive after a region on the screen has been selected. This
can be used to remove uninteresting parts or to reveal
other windows beneath. As an example, consider re-
vealing a small utility, such as a calculator or calendar,
inside an unused region of a primary application (Fig-
ure 3). As the keyboard focus follows the mouse posi-
tion in Façades, the user can then simply interact via the
keyboard with the partially covered calculator ‘through’
the hole. This is especially interesting if the primary ap-
plication is run in full-screen mode, which is something
that traditional window systems do not support. Holes
created in a window with the Façades system can be
deleted via a command in the window menu or with a
keyboard shortcut.

Figure 3: Accessing a calculator through a hole in a
word processor.

Using external components to interact with applications
One idea that appears rarely in the discussion about
adaptable user interfaces in the literature is that the
user cannot only adapt the visual appearance of the in-
terface, but also the interaction part of it. Façades al-
lows the user to do this without any change to the code
of the underlying application. One possible modifica-
tion is to replace a component of a GUI with another

GUI component, typically created by a third party. For
example, with Façades the user can replace a dropdown
list widget containing all countries of the world with a
map widget or alternatively some radio buttons for the
small set of countries that the user needs frequently in
his or her work. Another modification allows the user to
modify the interaction with standard components. For
example, the user can integrate scrolling and zooming by
remapping how mouse movements on a standard scroll
bar are interpreted. These and other examples will be
discussed in more detail later in the paper.

Managing Façades
To enable the quick recall of a façade, the user can give
it a name and save it through a specific command in the
window menu. When saving, the user can set options in
a dialog: automatic recall, automatic hiding of source
windows at recall time and the use of the window title
in the saved description of the façade.

At a later time and if all relevant windows are open, the
system can then recreate a façade automatically, or on
user demand via the window menu. For this, Façades
monitors all window related events and identifies match-
ing configurations via window geometry, class, and re-
source names. If applicable, replacement widgets are
automatically instantiated. A sub-menu of the normal
desktop menu also contains a list of all saved façades for
all currently active window configurations.

Contributions
In summary, we present the following new techniques
for adaptable user interfaces:
• Seamlessly merge duplicated screen regions into new

windows enabling the creation of new user interfaces
for existing applications.

• The ability to create holes in windows and to seam-
lessly overlay duplicated content over existing win-
dows.

• The ability to seamlessly replace widgets with other
(potentially customized) widgets.

• The ability to seamlessly change the interaction with
widgets, including the composition of widget behav-
iors, as well as the creation of toolglasses and other
advanced user interface techniques.

• Implementing all of the above in a way that does
not require any coding, with a simple-to-use interface
based on drag-and-drop.

The following implementation section provides the tech-
nical details that make the system efficient and reliable
and discusses related issues such as resizing.

IMPLEMENTATION DETAILS
In this section we describe how we implemented Façades
and how it is integrated into a windowing system. Con-
ceptually, Façades acts as a transparent layer over the
window system that redirects input events and dupli-
cates window regions as specified by the contents of each
façade window. For seamless duplication it uses the off-
screen buffer capabilities of Metisse [5], as well as its
input redirection facilities. Façades determines widget

FvwmCompositor

Input
Façadeholder

Input

Widgetreplacement
application Applications

Composition

Screen content
and input

Metisse Server
offscreen windows

App 3App 1 App 2

Drawing commands,
image stream

Accessibility API
(of GUI toolkit)

Input events

Figure 4: Illustration of input event and image flow in Façades system

positions through the accessibility API of modern GUI
toolkits. Finally, widget replacement and interaction
modification is achieved via the instantiation of simple
replacement applications that are again based on acces-
sibility API calls. Figure 4 illustrates how the various
components of Façades work together. The left hand
part shows a façade that composites two separate win-
dows, whereas the façade for ‘App 3’ utilizes widget re-
placement. In the following subsections we first discuss
how input & output are redirected and then mention
how we access and replace widgets.

Basic input/output management using Metisse

Façades is implemented based on Metisse [5]. The
Metisse architecture uses a compositing approach, mak-
ing a clear distinction between window rendering and
the interactive compositing process. The Metisse server,
an enhanced X Window server, renders applications off-
screen. In Façades, window images are composited by a
separate application, FvwmCompositor, which is based
on the window manager FVWM. Mouse and keyboard
events received by FvwmCompositor are usually sent
to appropriate applications through the Metisse server.
In some cases, however, events are directly handled by
FvwmCompositor itself, e.g. to implement façade region
selection and window management commands, such as
‘Alt-F4’. Specific façade commands in FvwmComposi-
tor are accessible from FVWM to enable the creation of
façade windows, holes, etc. Conversely, FvwmComposi-
tor uses FVWM commands to handle pop up menus or
to indicate the real mouse focus when the pointer is over
a duplicate.

Each façade window is managed by an instance of a sim-
ple program, façade-holder, that keeps track of the du-
plicate regions it contains and creates a new X window
to hold them (duplicates are then displayed by Fvwm-
Compositor in that window). This program is invoked
each time one or more duplicates are dragged from a
source window and dropped onto the desktop. Each du-
plicate is described in façade-holder by a tuple of the fol-
lowing form: (XID, srcx, srcy, srcwidth, srcheight, dstx,
dsty) where XID identifies the source window, (srcx,
srcy, srcwidth, srcheight) specifies the original region ge-
ometry relative to the source window, and (dstx, dsty)
specifies its position in the façade window.

Façade-holders publish these tuples to other programs,
including FvwmCompositor, through an X atom1. When
a new duplicate is pasted into an existing façade win-
dow, FvwmCompositor sends an X client message with
the source information for the duplicate to the façade-
holder. Upon receiving this message, the façade-holder
computes the local geometry of all its elements and up-
dates its atom accordingly. FvwmCompositor catches
this new layout and redraws the façade window.

FvwmCompositor maintains a list of duplicated regions
for every window and handles updates for every content
change. It also handles the necessary focus changes as
the mouse moves from one duplicated region to another.
Mouse and keyboard events for a façade window are nor-
mally sent to the appropriate source window. Similarly,
clicking on a duplicate region raises the façade window,
not the corresponding source window. FVWM handles
these situations by distinguishing two types of focus:
one for window management tasks, and the other for
interacting with window content.

Transient overlay windows, such as popup menus or
tooltips, are rendered in the right place. When such a
window is mapped, FvwmCompositor computes its ‘par-
ent’ window, i.e. the source window that is most prob-
ably responsible for this new window to appear. If the
mouse pointer is over an element of the parent, Fvwm-
Compositor positions the overlay based on the parent
location and the element position and geometry. If the
parent window is invisible, the overlay window is placed
close to the pointer. Transient dialogs are placed so that
their center is aligned with their façade window.

Iconification of source windows also poses specific prob-
lems. The usual way of iconifying X windows is to ‘un-
map’ them in the server and replace them with a new
graphical object. But unmapped windows do not get
redrawn and cannot receive events. Consequently, when
a source window is iconified in Façades, it is not un-
mapped, treated as iconified by FVWM and not ren-
dered by FvwmCompositor. When a source window
is closed, FvwmCompositor notifies the corresponding
façades by sending them an X client message that spec-
ifies the region(s) to be removed. When its last element
is removed, a façade either remains empty on-screen for
1Atoms are an X Window specific publish/subscribe mechanism

later use, or is automatically destroyed in the case of
cloned windows. Façade and cloned windows are not re-
sizable by the user. Cloned windows are automatically
resized to match the geometry of their source window.
Duplicated regions are kept visible in façades only if they
are still visible in their source window.

All menus to manage façades are handled by FVWM.
Some are statically defined in configuration files. Oth-
ers are dynamically created by FvwmCompositor (e.g.
the list of previously saved façades for a window). Sav-
ing a façade generates a human-readable description of
its elements on disk. FvwmCompositor uses the geom-
etry, class, resource names, and optionally the title of
the source windows of a façade to create a heuristically-
unique identifier. Widget-related information obtained
from accessibility APIs can also be used to make this
identifier more robust. FvwmCompositor loads all saved
façade descriptions at startup and whenever windows
are created or resized, it checks for matching façade de-
scriptions and creates them accordingly.

Taking advantage of accessibility services
Widget-related information is very useful for creating
façades. Knowing the position, size, type, and current
state of each widget as well as having access to its ac-
tions offers a number of interesting possibilities. As an
example, knowing the boundaries for each widget can fa-
cilitate the selection of widgets via snapping. There are
several ways to obtain widget-related information and
control widgets from the outside. In the current im-
plementation of Façades, we use the accessibility APIs
supported by most modern GUI toolkits.

Apple defined Universal Access APIs for its Carbon and
Cocoa toolkits, Microsoft the Microsoft Active Accessi-
bility & System.Windows.Automation frameworks, and
X Window the Assistive Technology Service Provider
Interface (AT-SPI), a toolkit-neutral way of providing
accessibility services supported by GTK+, Java/Swing,
the Mozilla suite, StarOffice/OpenOffice.org and Qt.
All of these APIs can query the current position, size,
type, and state of all widgets of an application. Fur-
thermore, all possible widget actions can be activated
via these APIs (e.g. one can cause selection events, trig-
ger buttons, etc.). The following pseudo-code segment
illustrates this for the example shown in Figure 9 via
the AT-SPI accessibility API.

Event handler for click at (x,y) on map
Input: x, y, app_name (application name),
comp_name (widget name), comp_type (widget type)

Map click to combobox list index
index = get_province_for_point(x, y)

recursively find the accessible component in widget tree
application = desktop.find_app(app_name)
comp = application.find_component(comp_name, comp_type)
get accessible action interface object
selector = comp.queryInterface("Accessibility/Selection")

"aaaaand: Action!": fire event to widget
selector.selectChild(index)

For resizing there are two issues to consider. Any GUI
application may resize it’s window or widgets at any
time or the user can resize the façade window itself.
While the Façades system can detect the first kind of
resize events via the accessibility API, any automatic
change to a façade might break the layout of the façade
as constructed by the user. This is clearly undesirable.
Hence, we currently warn the user in this case and re-
quire that he/she fixes the problem manually. Second, a
user can actively resize a façade window. While we could
search for widgets that are resizable and try to adapt the
layout accordingly, this would require an easy-to-use in-
terface for specifying widget layout. As current layout
methods typically have (too) many options, this is a re-
search topic of it’s own. Hence, we currently choose to
disallow resizing of façades.

Other possible implementations
We have implemented the Façades system using Metisse
and the accessibility API. The Metisse compositing ar-
chitecture permits dynamic rendering of interface ele-
ments and handles input redirection. Furthermore, the
FvwmCompositor interprets window management ac-
tivities directly, while it passes interaction with façade
content to the original applications.

It should be possible to implement Façades on other sys-
tems since accessibility APIs are now widely available.
Moreover, the compositing approach is available under
Mac OS X, Windows Vista and X Windows. However,
neither OS X nor Vista have APIs flexible enough to
freely redirect rendering output. For this reason Win-
Cuts [22], called the PrintWindow function every second
to update cut contents. In X Windows the full render-
ing API is accessible and documented. Even though
this API is very complex (compared to Metisse) it seems
possible to implement the rendering redirection part of
Façades with it.

For input redirection, Mac OS X and Windows have no
public API. As a workaround, WinCuts [22] draws a
cursor over the interface elements, and the source win-
dow is kept in front of the true cursor. X Window has
the X Event Interception Extension (XEvIE), but this
extension is not powerful enough. For example it is not
possible to send pointer events to a window, which is
covered by another. A future X extension [20] may pro-
vide enough control of input redirection to implement
something similar to Façades.

There are several other alternatives to extract wid-
get related information and to activate widgets. For
non-accessible GUI toolkits, one can extract informa-
tion about widgets by modifying the dynamically linked
toolkit library and adding functionality that returns
(part of) the current widget hierarchy state on demand.
Interaction with non-accessible widgets can be simu-
lated via appropriate mouse and keyboard input events
on the appropriate areas of a widget. E.g. to enter
a particular string into a text-field, the system selects
the field via a simulated mouse click, selects all old text
and erases it via appropriate key sequences, and then

simulates entry of the new string. Most other widgets
can be controlled with similar strategies. However, this
is only a temporary workaround, as most GUI toolkits
have already or are being retrofitted with an accessibil-
ity API, due to the strong need to add accessibility to
all applications.

Alternatively, we can implement Façades via an inter-
mediate layer in a window system. Such intermediate
layers already exist today, e.g. in the form of user inter-
face description languages (UIDL’s). These are used to
describe the user interface and how it activates the func-
tionality of the application. XUL and XAML are two
recent examples. If this intermediate layer is accessible
from the outside, it is possible to implement Façades as
an ‘UIDL filter’, which selectively replaces or duplicates
widgets in the UIDL stream and adapts the calls to the
application as appropriate.

DETAILED EXAMPLES / USAGE SCENARIOS
In the following section we present several examples of
useful façades and explain how they were created.

Widget duplication
One application of Façades is to change the UI of a soft-
ware package designed for right-handed people into a
left-handed version, e.g. by moving the scrollbar from
the right to the left-hand side. Another interesting idea
is to duplicate a toolbar on two sides of the work area
(or even on all four sides), which has the potential to sig-
nificantly decrease average tool selection time. Figure 5
shows a file browser - Konqueror - with an additional
toolbar at the bottom.

Figure 5: File browser with duplicated toolbar (bottom).

Façades also support the full duplication of whole win-
dows, similar to [14, 15]. This functionality is activated
via a titlebar menu. Duplication can be extremely use-
ful in a multiple monitors setting, as it allows the user
e.g. to duplicate the task bar or a panel with launch
buttons on every monitor (with changes visible every-
where simultaneously). Another application of this idea
is best illustrated with an example: Alice has two mon-
itors on her desk, a laptop monitor, and an external
monitor, which can be turned in any direction. Paul
arrives in Alice’s office and sits down on the other side
of the desk. Alice turns the external monitor so that
it faces Paul and duplicates her web browser onto the
external monitor. Alice can then freely show her work
while Paul is able to observe the demonstration.

Another example is the duplication of the GIMP toolbox
window: toolboxes can be duplicated for each drawing
window. We can even have two toolbox windows on
each side of a drawing window to accelerate access to
tools. Figure 6 illustrates such a layout.

Figure 6: GIMP screen layout with duplicated tool-
boxes.

Another application of Façades is to duplicate useful
notification areas into the area of an arbitrary window.
As an example, consider duplicating the taskbar clock
into the title bar or another unused area of a window
(Figure 7). This is clearly interesting for full-screen ap-
plications and also for multi-monitor setups.

Figure 7: Duplication of taskbar clock into an unused
area of Mozilla (near top right).

Widget duplication can also be used for the control of
applications on secondary display devices. The main is-
sue here is the reduction of mouse travel across large
distances. We describe a two-monitor scenario that sig-
nificantly extends an example from a technical report
of Hutchings and Stasko [14]. Paul is a web developer
and he edits a web page on his main monitor. On his
secondary monitor he runs two different web browsers
to test his work in real time. For this Paul first creates a
façade consisting of the two reload buttons and the two
vertical scrollbars of the browsers. Then he places this
façade on his main monitor just to the right of the web
editor. This allows Paul to quickly test his design by
interacting with the façade and has the advantage that
his mouse never needs to leave the main monitor.

We already presented an example of the power of com-
bining elements above. Another example is the creation
of a notification façade from different applications. Most
e-mail programs display the ‘inbox’ as a list of one-line
items containing information on the sender, subject, etc.
Selecting (part of) this list and the two last lines of an
instant messaging (IM) application allows the user to
compose a novel ‘contact’ notifier façade. The advan-
tage of such a notification application compared to the

usual small notificators in the taskbar is that it gives
simultaneously information on new mails and new IM
messages including the sender name. Users can then use
this information to decide whether to switch from their
current work to answer a message. Moreover, the user
can even answer an e-mail message without switching
to the full mail reader window as he/she can right-click
on an e-mail’s header line. One disadvantage of such
a notification window is that it uses more screen space
than the rather minimal taskbar notificators. However,
Metisse has the ability to scale windows. Hence, such
notifications can be also scaled (e.g. by reducing by
30%, which still maintains readability).

Widget replacement
Façades also targets the replacement of standard GUI
widgets with other widgets. Consider a scenario where
a user frequently uses a few options in a long list widget
and only rarely uses other entries. A classical example is
a call-center where data about each incident is recorded,
and where the client base consists of many users in a
small set of countries, but also a few others from around
the world. Instead of having to choose every time from
the list of all countries on the planet in the incident-
entry form, it is much more efficient to have quick access
to the subset of frequently used countries and provide
a separate way to access the full list. As the call-center
software developer cannot foresee which countries will
be used frequently and how large that set will be, it is
advantageous to give the user control of this GUI aspect.
Figure 8 depicts an address entry form application for
specifying addresses in Canada, the dialog that lets the
user specify the provinces that appear in the façade, and
the façade itself.

Figure 8: Original address entry application (left), the
façade construction dialog, which lets the user select
frequently used entries (middle) and the final façade
for the application with a set of radio buttons (right).

In Façades, a user can access this functionality by first
selecting a widget, then accessing a context-sensitive
menu and selecting the appropriate entry. This will
show a façade creation dialog with appropriate options.
Once the user confirms their choice, Façades creates
the custom replacement widget, which can be placed
into a façade. The following pseudo-code illustrates the
main parts of a generic combobox replacement widget.
Code related to the dialogs for façade construction and
‘Other...’ functionality is not shown for brevity.

function combo2radio(app_name, combo_name):
app = desktop.find_app(app_name)
combo = app.find_component(comp_name, "combo box")
show dialog to user and return selected entries on close
selection = SelectFromDialog(combo.items)
create a new window with the selected radio buttons
radiobox = Window()
for item in selection:

radio = RadioButton(item)
radio.bind("toggle", selectCallback, item.id)
radiobox.add(radio)

radiobox.display()

function selectCallback(widget, id):
selector = widget.queryInterface("Accessibility/Selection")
selector.selectChild(id)

Another option is to replace

Figure 9: An al-
ternative façade for
the application from
Figure 8.

the provinces combobox in
Figure 8 with an interactive
map that allows direct selec-
tion of provinces in a map of
Canada (see Figure 9). This
is achieved via a replacement
widget that maps click loca-
tions to selection events on
the combo box. While this
replacement widget is not as
generic as the one depicted
in Figure 8, it offers a bet-
ter visualization, which some
users may find easier to use. Depending on the user’s
needs, he or she may prefer one alternative or the other.

As a different example for the replacement of stan-
dard widgets, consider a text-area widget and its en-
hanced replacement that adds syntax highlighting to
make the contents easier to comprehend. With this re-
placement widget the user interface of any application
with un-enhanced text-area widgets can be improved via
Façades.

Similar to the shown examples, one can imagine many
other replacement widgets and the code behind them
will follow the general structure of the pseudo-code
shown above, but tailored to the specifics of each pair
of source and replacement widget. Consider e.g. en-
hancing an existing date entry field with an automatic
pop-up calendar widget, whenever it is selected. Note
however, that not all potentially possible widget replace-
ments are ‘good’ from a UI designer standpoint, but this
topic is beyond of the scope of this paper.

Interaction composition
Previous research has shown that toolglasses can im-
prove user performance [16]. They are transparent
UI elements, whose position is controlled by the non-
dominant hand. The user then ‘clicks-through’ the de-
sired mode-icon of the toolglass with the dominant hand
to activate a function at the current cursor location. In
Façades, the user can associate another (extended) input
devices to a selected window or façade via the Façade
window menu to create a toolglass. This causes the win-
dow to become semi-transparent and to remain always

Figure 10: Using a palette façade as a toolglass.

on top over normal windows. The second input device,
typically held in the nondominant hand, then controls
the position of the toolglass window. Whenever the user
presses a button on the device in the dominant hand,
a click is sent to the toolglass (to activate the correct
mode) and the press as well as subsequent drag events
are sent to the window under the toolglass. This allows,
for example, positioning the toolglass over the drawing
area to select a tool and at the same time to start using
that tool. For an illustration see Figure 10.

Moreover, a right click with the non-dominant device
allows toggling between toolglass and normal window
mode. This mode permits users to change tools with
their non-dominant hand and to work with the selected
tool with the dominant hand. We follow here the tool-
glass implementation of the post-WIMP graphical ap-
plication CPN2000 [2]. One of the attractive features of
Façades is that no change to the underlying application
is necessary to fundamentally improve the user interface
via toolglasses.

The OrthoZoom technique [1] combines scrolling and
zooming. Mouse movement along the scrollbar direc-
tion results in scrolling, while orthogonal movements re-
sult in zooming. In addition, when the user releases the
mouse button the original zoom factor is reestablished.
This technique has been proven to be efficient and allows
simultaneous control of scroll and zoom with a mouse.
As a variation, one can map movement in the orthogonal
direction to modulation of scrolling speed: the further
the cursor is from the scrollbar, the slower the speed.
This allows for very fine position control. Moreover, the
two techniques can be combined: one orthogonal direc-
tion (e.g. left) is mapped to OrthoZoom and the other
direction (e.g. right) modulates scrolling speed.

We have implemented these techniques for any acces-
sible application. When the user right clicks with the
façade modifier on a window, the system goes thought
the widget tree and checks if the widget under the cursor
has an accessible value. If yes, entries for scrolling are
made available in the Façades menu. Additionally, if ac-
cessible zoom actions are available, OrthoZoom is made
available, too. During interaction, the system then cap-
tures all events on the scrollbar and controls the appli-
cation via the accessibility API. Clearly, the fluidity of
the OrthoZoom techniques depends on the ability of the

applications to rapidly zoom in and out, but this issue
is beyond the scope of this paper. One unexpected ben-
efit is that with this idea any widget with an accessible
value can become scrollable - even a value text box can
be controlled via this technique.

DISCUSSION
The current implementation of Metisse and the Façades
system is fast enough to duplicate a 1590x860 video win-
dow at 25Hz on a recent laptop. Due to their complexity,
accessibility APIs take some time to understand. How-
ever, once this has been mastered, replacement widget
applications are very easy to generate. Modifying the
interaction at the event level (e.g. remapping the action
associated with a right click on a canvas), is also reason-
ably easy. The accessibility APIs provide all necessary
data for Façades, but better access to graphical widget
information could simplify some issues.

The ability to snap the selection to widgets is ar-
guably the first thing that users notice positively about
Façades. However, once users get used to the idea of
freely adapting user interfaces of existing applications,
they quickly come up with novel uses. One user, who
uses a graphical editor in combination with command-
line tools, has created a replacement widget with a ”Save
all” button that he places adjacent to the terminal win-
dow. The functionality behind the button activates the
save function for all open editor windows to deal with
the common problem of forgetting to save changes.

Another application of Façades is to monitor a larger set
of mailboxes. As the user is waiting for different kinds
of messages at different times, he creates a façade that
monitors only those that are currently ”interesting” and
adapts that façade on demand to changed requirements.
Yet another good use of Façades is to fix problems with
suboptimally designed user interfaces. The search box
of Thunderbird, for example, has a (barely visible) drop-
down menu that allows changing between searching the
subject, sender, and/or body. With Façades one can
create a set of radio-buttons adjacent to the search box
to make it easier to select the desired functionality.

Finally, Façades has the ability to make even static visu-
alizations interactive by mapping mouse actions in cer-
tain regions to activations of other widgets, which is
yet another way to enhance existing GUI’s. However,
we have to point out that not all modifications pos-
sible via Façades will improve the usability of a user
interface. This is the trade-off faced by any user of a
general-purpose tool.

CONCLUSION
In this paper, we presented a new approach to adaptable
user interfaces. User Interface Façades allow end-users
to quickly, flexibly and seamlessly change the interface
of any application without coding. The system supports
cutting, copying and pasting of screen regions, combined
with the facility to overlay screen regions over other win-
dows. We have shown how this approach supports both
ad-hoc opportunistic customizations as well as persis-

tent ones. Furthermore, we demonstrated that Façades
also supports deep customizations, such as the modifica-
tion of the interactive behavior of arbitrary applications,
something that previous work has not supported. We
also presented several examples that demonstrate and
extend the basic concept in several interesting directions
(e.g. window management, multiple monitors, cross-
application customizations, new scrolling techniques).

From a global perspective, we believe that Façades of-
fers a good complement to direct programming of user
interfaces. From the user’s view, it greatly increases the
flexibility of any GUI. From the programmers view, it is
transparent, as no programming is required to give the
user the ability to change the user interface. In the fu-
ture, appropriate APIs to the Façades system may even
enhance the interface programmer’s or designer’s ability
to create good user interfaces.

The generalization from rectangular regions to more ar-
bitrary regions is fairly simple from a high-level point
of view and may increase the utility of façades even fur-
ther. For future work, we plan to explore the Façades
concept further and investigate how it can be integrate
with UI description languages such as XUL & XAML.
Furthermore, we will evaluate the adaptation facilities
of Façades with user studies, similar to [8, 12].

In this context it is interesting to realize that User Inter-
face Façades extend Apple’s vision of the window system
as ‘a digital image compositor’ [13]. More precisely, we
can say that the addition of Façades to the standard
window management and user interface paradigms al-
lows us to put forth the vision of the window system as
a fine-grained interactive graphical component compos-
itor.

ACKNOWLEDGMENTS
Many thanks to the reviewers for their insightful com-
ments, which led us to improve the paper. The initial
part of this research was performed while the first au-
thor was on a sabbatical stay at In Situ, and Michel
Beaudouin-Lafon’s support is gratefully acknowledged.
This work has been partially funded by NSERC and the
French ACI Masses de données (Micromégas project).

REFERENCES
1. C. Appert and J.D. Fekete. Orthozoom scroller: 1d

multi-scale navigation. In Proceedings of CHI ’06, pages
21–30. ACM Press, 2006.

2. M. Beaudouin-Lafon and H. M. Lassen. The archi-
tecture and implementation of cpn2000, a post-wimp
graphical application. In Proceedings of UIST ’00, pages
181–190. ACM Press, 2000.

3. R. Bentley and P. Dourish. Medium versus mecha-
nism: Supporting collaboration through customization.
In Proceedings of ECSCW ’95, pages 133–148. Kluwer
Academic, September 1995.

4. L. Berry, L. Bartram, and K.S. Booth. Role-based con-
trol of shared application views. In Proceedings of UIST
’05, pages 23–32. ACM Press, 2005.

5. O. Chapuis and N. Roussel. Metisse is not 3D desktop!
In Proceedings of UIST ’05, pages 13–22. ACM Press,
October 2005.

6. S. Chatty, S. Sire, J.L. Vinot, P. Lecoanet, A. Lemort,
and C. Mertz. Revisiting visual interface programming:
creating gui tools for designers and programmers. In
Proceedings of UIST ’04, pages 267–276. ACM Press,
2004.

7. K. Edwards, S.E. Hudson, J. Marinacci, R. Rodenstein,
T. Rodriguez, and I. Smith. Systematic output modifi-
cation in a 2d user interface toolkit. In Proceedings of
UIST ’97, pages 151–158. ACM Press, 1997.

8. L. Findlater and J. McGrenere. A comparison of static,
adaptive, and adaptable menus. In Proceedings of CHI
’04, pages 89–96. ACM Press, 2004.

9. J. Fogarty, J. Forlizzi, and S.E. Hudson. Specifying be-
havior and semantic meaning in an unmodified layered
drawing package. In Proceedings of UIST ’02, pages
61–70. ACM Press, 2002.

10. J. Fujima, A. Lunzer, K. Hornbæk, and Y. Tanaka. Clip,
connect, clone: combining application elements to build
custom interfaces for information access. In Proceedings
of UIST ’04, pages 175–184. ACM Press, 2004.

11. D. Funke, J. Neal, and R. Paul. An approach to
intelligent automated window management. IJMMS,
38(6):949–983, 1993.

12. K.Z. Gajos, M. Czerwinski, D.S. Tan, and D.S. Weld.
Exploring the design space for adaptive graphical user
interfaces. In Proceedings of AVI ’06, pages 201–208.
ACM Press, 2006.

13. P. Graffagnino. OpenGL and Quartz Extreme. Presen-
tation at SIGGRAPH OpenGL BOF, Apple, 2002.

14. D. Hutchings and J. Stasko. An Interview-based Study
of Display Space Management. Technical Report 03-17,
GIT-GVU, May 2003.

15. D. Hutchings and J. Stasko. mudibo: Multiple dialog
boxes for multiple monitors. In Extended abstracts of
CHI ’05, pages 1471–1474. ACM Press, April 2005.

16. P. Kabbash, W. Buxton, and A. Sellen. Two-handed
input in a compound task. In Proceedings of CHI ’94,
pages 417–423. ACM Press, 1994.

17. E. Kantorowitz and O. Sudarsky. The adaptable user
interface. CACM, 32(11):1352–1358, 1989.

18. T. Kühme. A user-centered approach to adaptive inter-
faces. In Proceedings of IUI ’93, pages 243–245. ACM
Press, 1993.

19. J. McGrenere, R.M. Baecker, and K.S. Booth. An evalu-
ation of a multiple interface design solution for bloated
software. In Proceedings of CHI ’02, pages 164–170.
ACM Press, 2002.

20. K. Packard. Coordinate transform redirection for com-
posited window environments. Unpublished talk, FOS-
DEM 2006, Brussels (Belgium), 2006.

21. N. Roussel. Ametista: a mini-toolkit for exploring
new window management techniques. In Proceedings of
CLIHC ’03, pages 117–124. ACM Press, August 2003.

22. D. Tan, B. Meyers, and M. Czerwinski. Wincuts: ma-
nipulating arbitrary window regions for more effective
use of screen space. In Extended abstracts of CHI ’04,
pages 1525–1528. ACM Press, 2004.

	INTRODUCTION
	MOTIVATION
	USER INTERFACE FAÇADES
	Copying and pasting screen regions
	Cutting screen regions
	Using external components to interact with applications
	Managing Façades
	Contributions

	IMPLEMENTATION DETAILS
	Basic input/output management using Metisse
	Taking advantage of accessibility services
	Other possible implementations

	DETAILED EXAMPLES / USAGE SCENARIOS
	Widget duplication
	Widget replacement
	Interaction composition

	DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS

