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ABSTRACT2

Risk assessment and follow-up of oral potentially malignant disorders in patients with mild or3
moderate oral epithelial dysplasia is an ongoing challenge for improved oral cancer prevention.4
Part of the challenge is a lack of understanding of how observable features of such dysplasia,5
gathered as data by clinicians during follow-up, relate to underlying biological processes driving6
progression. Current research is at an exploratory phase where the precise questions to ask are7
not known. While traditional statistical and the newer machine learning and artificial intelligence8
methods are effective in well-defined problem spaces with large datasets, these are not the9
circumstances we face currently. We argue that the field is in need of exploratory methods that10
can better integrate clinical and scientific knowledge into analysis to iteratively generate viable11
hypotheses. In this perspective, we propose that visual analytics presents a set of methods12
well-suited to these needs. We illustrate how visual analytics excels at generating viable research13
hypotheses by describing our experiences using visual analytics to explore temporal shifts in the14
clinical presentation of epithelial dysplasia. Visual analytics complements existing methods and15
fulfills a critical and at-present neglected need in the formative stages of inquiry we are facing.16
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1 INTRODUCTION
The lack of understanding of the natural history of oral cancer is a major barrier to our ability to impactfully18
intervene early in the disease. As a collective group, clinicians and scientists have followed patients19
with clinical lesions and dysplastic disease for decades. There are unused files full of text, pictures,20
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and annotations on these patients. In addition, as our capacity to examine biological change underlying21
time-varying shifts in lesions has accelerated, there is simultaneously additional, increasingly diverse22
information from scientists coming in. A key missing component in this effort is methods that allow us to23
frame and utilize such complex and heterogeneous data. They are highly multi-faceted and demand the24
integration of diverse clinical and scientific knowledge to generate testable hypotheses informed by the25
most comprehensive understanding of why lesions shift over time and when such changes may be clinically26
important.27

Traditional statistics or the newer machine learning and artificial intelligence (henceforth ML/AI) methods28
are ill-suited to address many of the immediate challenges faced. The small sample sizes and complexity of29
clinical datasets limit the types of questions that can be answered. Additionally, these methods generally30
rely on well-defined and narrow questions. This is appropriate for summative analyses that aim to evaluate31
specific hypotheses and expectations. Current research, however, is at an exploratory stage. Instead,32
formative approaches that aim to understand how clinical data might be interrogated, and that support the33
scientific inductive process of developing, testing, and iterating over a theory are better suited. This requires34
the integration of expert knowledge into analysis. Data on their own do not offer explanations of why35
certain patterns or relationships within them exist. From the understanding of procedures involved in data36
gathering to theories of how observed data relate to underlying biological mechanisms driving dysplastic37
disease, clinical and scientific knowledge is key. Unfortunately, statistical and ML/AI methods often require38
significant training for interpretation and even with sufficient training often remain as difficult-to-understand39
“black boxes”.40

We have faced this problem in British Columbia for some time. The Oral Cancer Prediction Longitudinal41
(OCPL) study was established over 20 years ago, to follow patients with biopsy-confirmed primary mild42
and moderate epithelial dysplasia (henceforth low-grade dysplasia, LGD). The presence of epithelial43
dysplasia is one of the strongest predictors of transformation of LGD to oral cancer; yet there are many44
unresolved issues around such lesions. The long-term goal of the OCPL study is to use this cohort, with its45
diverse data on clinical, histologic, and molecular change, and its samples, to help us answer some of the46
key management questions for these patients: Which of these dysplastic lesions is at risk for progression?47
Which do we treat, and if we treat, when and how do we do it? There are close to 600 cases in the OCPL48
study, many with between 10-20 years of follow-up, with over 7000 visits for these patients – a rich resource49
to identify and study the diverse patterns of temporal change as they occur and look for associations with50
transformation risk.51

The question addressed in this paper is faced by all of us working in this area. How do we deal with this52
complex and increasingly multi-faceted data pool, especially when dealing with temporal shifts in patient53
data? How do we use such information to drive meaningful change – to link patterns across data sources54
and to generate new testable ideas? Where do we begin?55

We argue for methods that support the iterative scientific process needed to integrate clinical and56
mechanistic knowledge. We propose that visual analytics (VA) is well-suited to such a niche, providing an57
approach that can be used to integrate “data-driven” and “knowledge-driven” processes into an iterative58
analysis that can improve our understanding of the natural history of oral cancer development. In this paper,59
we describe the challenges of heavily “data-driven” methods and why VA is well suited to complement60
such methods. We illustrate the value of VA by discussing a simple exploratory visual analysis of lesion61
shifts in oral dysplasia we conducted using data from the OCPL study.62
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2 CHALLENGES IN HEAVILY DATA-DRIVEN METHODS
The rapid change in computational capacity has allowed researchers to increase the volume of data analyzed63
and to employ sophisticated ML/AI to increasingly complex datasets, which have been inaccessible in the64
past. Computer vision algorithms can identify cancerous nodules from medical imaging with accuracy65
sometimes exceeding human experts (23). Recent preliminary research has also made headway in making66
these algorithms more interpretable for clinicians (7). However, state-of-the-art algorithms such as these are67
applied to narrow and highly specific tasks and require large volumes of highly constrained, well-defined68
data while relying on a number of assumptions about the statistical properties of these data (28) (Figure 1A).69

In contrast, clinical datasets are often complex, heterogeneous, and composed of comparatively much70
lower volumes of patient data. In addition, patients are diverse and biological processes are ill-understood,71
and the understanding of how data are gathered is primarily held by clinicians. This creates an ill-defined72
problem space where the precise questions to ask are not yet known and thus we cannot expect a linear73
process of well-defined inquiry. Even if there are some well-defined questions, they have not been74
addressed using existing approaches and progress has been slow. This problem requires iterative and75
flexible generation and evaluation of practically relevant and knowledge-informed hypotheses (Figure 1B).76
Presently, natural intelligence is comparatively better than artificial intelligence at dealing with such77
challenges.78

ML/AI algorithms struggle with generalization that goes beyond very constrained problem spaces; they79
cannot generate causal models of mechanisms underlying the data and translate them to other domains80
(28). Generalization involves going beyond what is explicit in data and imagining alternative potential81
mechanisms of explanation. Counterfactual reasoning, the imagining of alternative events and outcomes,82
has been the foundation of theories explaining causality (19). These theories have been integrated into83
methods used to analyze observational data in epidemiology in the Bradford-Hill criteria (15). While84
there is an effort underway to reconcile ML/AI approaches with contemporary causal inference to enable85
automated discovery of causal structure from data (28), such problems are still largely a human reasoning86
activity.87

3 SENSEMAKING
Sensemaking is a “natural kind of human activity in which large amounts of information about a situation or88
topic are collected and deliberated upon to form an understanding that becomes the basis of problem-solving89
and actions” (26). This activity is often described through the data/frame theory of sensemaking which90
posits that humans organize knowledge and account for new information using explanatory structures called91
“frames” (16). As humans encounter new information through their environment, or in this case visualization92
systems, the information is matched and fitted to these frames. These frames are then elaborated upon,93
questioned, rejected, or otherwise manipulated, in our case through the interactive visualization system, in94
light of any new information. The scientific process of developing, testing, and iterating over theory closely95
mirrors sensemaking. This flexible way of thinking is what allows humans to meaningfully understand and96
act in a variety of natural settings such as the exploratory scientific inquiry of data.97

An essential component of sensemaking is the generation of alternative hypotheses or interpretations98
that are flexibly fitted to and altered by data (27). This process can generate new frames of understanding99
based on data (data-driven), as well as iterate over existing ones (knowledge-driven) (16). This iterative100
fitting and manipulation of data and theory (Figure 1B) integrates human knowledge into analysis without101
being hampered by the limits of what is explicitly contained in the data. The relatively new field of VA102
specifically supports such human sensemaking activities.103
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4 VISUAL ANALYTICS
In scientific domains, visualization is commonly thought of as serving a purely communicative role,104
primarily supplementing text to emphasize a point. Yet, visualizations, especially interactive ones, can also105
be used to support a method of analysis. Visual Analytics, the “science of analytical reasoning facilitated106
by interactive visual interfaces” (6), leverages the strengths of computers to improve human analysis. The107
aim is to make complex computational processes transparent and empower humans to conduct analysis108
in an interpretable and accessible way. Rather than replacing ML/AI methods, VA complements these109
approaches and often integrates them in analysis. Addressing the challenges of interpretability and opening110
the “black box” of ML/AI algorithms has become a burgeoning area of research in VA (4) .111

Visualization capitalizes on the innate intelligence of the human visual system. Using external112
representations as an aid is called “visual thinking” (30). The human visual system can extract complex113
statistical patterns from scenes while at the same time linking visual information to high-level cognitive114
processes. The human visual system is not one passive system, but a number of active systems that can115
both direct attention to important aspects of data in a bottom-up fashion as well as be directed to search116
for patterns in a top-down fashion (9). This interplay between bottom-up (data-driven) and top-down117
(knowledge-driven) processes in the visual system creates a dynamic interface between humans and data118
enabling iterative sensemaking processes. This interaction between prior knowledge and perception enables119
humans to “complete patterns” and derive meaning based on incomplete or uncertain information. The120
“Gestalt” school of psychology and the concomitant visual Gestalt laws describe these processes (30).121

Just as sensemaking in open-ended problem spaces requires the generation and management of alternative122
hypotheses, VA systems are designed to support alternative visual representations of data to address these123
hypotheses and help steer the analysis. Some VA systems also incorporate explicit support for managing124
alternatives (20, 22). Others have proposed “mixed-initiative” systems that utilize machine learning and125
data-mining systems that integrate alternative “threads” of analysis as a central system component (21, 29).126

VA may seem relatively new, but this approach has already been incorporated in a broad range of domains127
associated with healthcare and scientific areas. For example, VA has impacted the tracking of disease128
progression in electronic health records (25), clinical support for blood transfusions (12), decision making129
in public health (3), genomics (2), chemistry (5), and oncology (14, 24).130

5 OUR COLLABORATIVE PROJECT
In this section, we illustrate how VA supports the process of generating, testing, and iterating over alternative131
hypotheses, using our experiences analyzing a clinical dataset of patients with LGD. We began our analysis132
around data collected during the examination of clinical lesions. Such assessment is a key initial point in133
the engagement of a clinician with the patient. It is part of the ascertainment of whether the lesion falls134
within the “normal” boundaries of change in a tissue, and can thus be triaged back to the community, or135
instead, requires further follow-up.136

Lesions change over time – disappearing, re-appearing, growing in size, altering shape, and changing in137
texture and appearance. As such, clinical change reflects, in part, alterations occurring at the molecular,138
cellular, and tissue level. Increasingly there are new developments in clinical approaches and tools used139
in decision making around lesions. A missing component is our capacity to track changes over time and140
understand what observable baseline changes, in the absence of intervention, are associated with alterations141
in progression risk.142
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Time-based analyses may consider a variety of perspectives or properties of data (e.g., curve fitting,143
regression, or signal decomposition). When we began these studies, we had no basis to choose any particular144
type of analysis, and rather than over-constrain the problem-space, we chose to look at sequences which145
we felt could reveal a variety of patterns in the time-varying data.146

Sequences are notoriously challenging for both humans and algorithms to work with (8, 10). As a147
preliminary step, we consulted ML experts on an appropriate approach. We employed hidden Markov148
models (HMMs), a set of algorithms commonly used for mining sequence patterns of biological data (32).149
However, the areas where such models have been particularly effective are where the volume of data is150
quite high, the variety of patterns is relatively low, and the problem space is also relatively constrained.151
Examples include sequence mining in genetics (13) or protein structure prediction (31). We discovered152
early on that we do not have nearly enough data for HMM. Another issue was that our clinical data are153
relatively complex, reflecting a variety of data-generating processes. The algorithmic output was not strong154
and we could not find any explanations that could account for the patterns and match existing biological155
understanding.156

We then explored the use of interactive visualizations to analyze these sequences. While algorithmic157
approaches are often incorporated in VA systems to make sequences and other patterns more tractable158
(8), for the illustrative purposes of this paper, we will focus on a purely visual approach to highlight how159
visualizations enable sensemaking and hypothesis generation.160

5.1 Investigating Shifts in Lesions161

We conducted our analysis using simple dot plot visualizations. In Figure 2A, we provide a simplified162
diagrammatic version of the interactive visualizations we used in analysis to illustrate our process. We163
identified patterns in the data which indicated potential explanatory mechanisms (Figure 2B). This is an164
example of how patterns in data (data-driven) can elicit relevant knowledge and thus also influence how165
important patterns are perceived (knowledge-driven). Drawing on prior domain knowledge, clinical166
researchers on our team recognized several sequence patterns and iteratively generated alternative167
hypotheses that could account for such patterns.168

We first identified instances where clinical lesions disappeared completely – establishing when lesions169
were present or absent for each patient (Figure 2). In some patients, the lesion persisted at all time points170
(termed “persistent lesions”). In others, the lesion disappeared and did not recur during follow-up (termed171
“resolved”). In some cases, the lesion disappeared early in follow-up and then ”re-emerged”. A fourth172
pattern showed lesions disappearing and reappearing, often multiple times, in an “unstable” fashion.173

This process triggered some speculative questions around what could explain these perceived patterns.174
As a preliminary inquiry, we questioned the reliability of these data as they had not been used in this way175
before. Clinicians associated with the OCPL study went back to the data to confirm these patterns, using176
clinical charts, pictures, and the database. As a result of this process and dialogue, several errors in the data177
were identified and corrected, illustrating the value of visualization at such formative stages.178

We also questioned whether shifts in “resolving” and “unstable” lesions associated with small lesion size179
and excision during biopsy could be confounding the lesion’s natural history. We checked. There was no180
apparent, consistent association with such descriptors. We explored the relationship between these patterns181
and patient outcomes. Virtually all of the mild or moderate lesions that progressed to severe dysplasia or182
cancer were persistent lesions. But what intrigued us was the observation that non-progressing lesions fell183
into two groups: stable, persisting lesions and unstable lesions, with lesions appearing and disappearing184
multiple times during follow-up. This generated a series of questions: What was causing the “unstable”185
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phenomena, i.e., what is the underlying biology associated with such change? And did it mean anything for186
risk or future trajectory of patients? Does it have clinical ramifications/value?187

One potential hypothesis is that “unstable“ non-progressing lesions could represent those in which188
protective mechanisms are actively engaged in identifying and removing damaged and genetically altered189
cells, those with altered signaling pathways, and dysregulated proliferation/differentiation controls. This190
could involve damage recognition and repair genes, for example, p53-controlled processes, that would191
trigger events such as senescence or apoptosis. Such changes could also involve cell-cell interactions in the192
tissue, the local microenvironment, and/or activity of the immune system. These protective systems could193
switch on and off, as abnormal clones developed and evolved in a lesion. A dysregulation of such systems194
would result in progression with persistence of the lesions.195

The link to the immune system, is particularly attractive, given the rapid evolution of both technology196
in this area, especially associated with tissue change and risk prediction for cancer development. Recent197
findings in the esophagus, lung, and oral cavity support the possibility that the immune system is capable of198
recognizing premalignant lesions and intercepting their progression to cancer (1, 11, 17, 18). Premalignant-199
specific putative neoantigens have been identified in some such lesions and coupled to tissue infiltration of200
specific T effector and cytotoxic cells, for example, CD4, CD8, PD-1, and PD-L1 (17). Finally, early data201
support the association of alterations to antigen processing and presentation pathways and depletion of202
innate and adaptive immune cells with premalignant lesions that are more likely to progress. The question203
is, can we now use this knowledge and our current analysis systems to follow the immune system over204
time, and look for parallel, concordant alterations in unstable lesions that would support their involvement205
in temporal shifts?206

6 DISCUSSION
We have only touched on a small portion of the potential analyses in the research area we have outlined.207
Even so, our experiences demonstrate the potential for visual analytics to generate and explore new research208
questions. Conventional methods used in oral oncology research have left many resources, such as complex209
clinical datasets or the expert knowledge of clinicians, underutilized, and many related questions unasked.210
It doesn’t need to be this way. Using VA allows us to cast a wider net and catch research trajectories that211
might otherwise remain unexplored. In the context of early detection and prevention of malignant dysplasia,212
leveraging the data that are already available through clinics has the potential to transform the standard of213
care.214
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Figure 1. (A) Heavily data-driven methods follow a linear flow from data to findings, require voluminous
data to address narrow questions that are known ahead of the analysis, and produce confirmatory and
precise findings but where analyses may be difficult to interpret ”black boxes”. (B) Methods that support
the data and knowledge-driven process of sensemaking iteratively generate, evaluate, and refine alternative
hypotheses. Such methods are appropriate for exploratory and formative analyses.
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Figure 2. (A) Four exemplary sequence patterns in patient visits identified through visual analysis are
presented. Circles represent individual visits with time moving left to right. (B) Several alternative
explanatory mechanisms generated during visual analysis are matched to observed patterns.
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