
The Effect of Animation, Dual View, Difference Layers and Relative Re-
Layout in Hierarchical Diagram Differencing

Loutfouz Zaman

York University, Toronto, Canada
Ashish Kalra

NIT Kurukshetra, India
Wolfgang Stuerzlinger

York University, Toronto, Canada

ABSTRACT
We present a new system for visualizing and merging differences
in diagrams that uses animation, dual views, a storyboard, relative
re-layout, and layering. We ran two user studies investigating the
benefits of the system. The first user study compared pairs of
hierarchical diagrams with matching node positions. The results
underscore that naïve dual-view visualization is undesirable. On
the positive side, participants particularly liked the dual-view with
difference layer technique. The second user study focused on
diagrams with partially varying node positions and difference
visualization and animation. We found evidence that both
techniques are beneficial, and that the combination was preferred.

KEYWORDS: Design, Human Factors

INDEX TERMS: H.5.1 Multimedia Info. Systems: [Animation];
H.5.2 User Interfaces: [Graphical user interface (GUI)]

1 INTRODUCTION
Computer-supported version differencing and merging of text
documents has been used at least since the introduction of the
Unix diff tool [14]. Modern version control tools for text are much
more user-friendly by incorporating visual interfaces that facilitate
differencing and merging. One example is the use of highlighting.
Another, more recent one, is the use of animation [7].

A number of algorithms and interaction techniques have been
proposed for effective dynamic graph visualization. Recently, user
studies were conducted to evaluate these [3, 4]. However, these
user studies focused on generic graphs where attribute values
associated with nodes or edges are irrelevant. Only a small
fraction of research addresses diagrams where nodes in the graph
are identified by name, see Purchase et al. [26]. Also, dynamic
graph visualization research primarily targets differencing alone,
and to our knowledge, no previous quantitative research exists on
visualizations that support merging of diagram versions.

To address these shortcomings, we introduce a system for
differencing and merging diagrams that makes use of Dual View,
Animation, Re-Layout, Layers and a Storyboard, abbreviated
DARLS. The system is targeted at diagrams with node and edge
attributes. Such diagrams are used frequently in architecture,
design, information and concept visualization, and in software
engineering, i.e. software documents such as UML diagrams. For
example, the system can be used to track the evolution of class
dependency diagram over releases, a particular course in the
prerequisite visualization, or to visualize the evolution of any
diagram in general. It also can be used to merge versions of a
diagram and to perform selective undo.

2 RELATED WORK
Dynamic graph drawing is a well-researched area within the field
of visualization. It deals with the problem of visualizing a graph
that evolves over time and, therefore, it is directly related to our
work. The concepts of mental map, difference map, small multiple

and animation are thus related to our work. Also, our works builds
on side-by-side views for visual comparison, storyboards for non-
linear access, as well as text and UML diagrams versioning.

2.1 Mental Map
Our system uses incremental layout methods for differencing
diagrams. Such layouts aim to preserve the user’s mental map,
which refers to the structural cognitive information a user creates
internally when observing the layout of a graph [9]. The mental
map facilitates navigation in the graph or comparison of it and
other graphs. Purchase et al. [26] examined the effect of mental
map preservation on dynamic graph readability for directed
acyclic graphs drawn in a hierarchical manner. The authors found
that the mental map was important for questions that required
nodes of the graph to be identified by name, but less important for
questions that focus on edges or do not require nodes to be
differentiated. Maier and Minas [17] demonstrated that it is
meaningful to define incremental layout algorithms for visual
languages with both graph-like and non-graph-like features, such
as class diagrams. Both these efforts inspired us to make use of
relative graph re-layout in our system as we target the same kind
of diagrams. For other work on mental maps see e.g. [27, 29].

2.2 Difference Map, Small Multiples and Storyboard
Our proposed layering technique is related to the concept of a
difference map in dynamic graph drawing. A difference map
presents the union of all nodes and edges in the two graphs for
two different timeslices [2, 4]. Using a time slider is a common
method for version access. It is used in the Diffamation System
for text version differencing [7] and in TimeTree [6] for
navigating hierarchies changing over time. However, our system
uses a storyboard for this purpose. Su [32, 33] introduced a new
interaction metaphor and visualization of the operation history for
2D illustrations. The user has access to the history via graphical
depictions at the top of the document. Other approaches to
storyboard have been presented, too [16, 19, 21]. In dynamic
graph drawing, small multiples display dynamically evolving data
via a matrix of images that visualizes the differences between
objects. Each image is a timeslice [3]. In our system the
storyboard and the dual view can be thought of as small multiples.

2.3 Animation
Today, many visual systems utilize animation to help the user
understand transitions. Examples include changes in node-link
diagrams and structural relationships [31], perception of statistical
data visualizations [13], and dynamically evolving data in graphs,
see below. A number of papers support the idea that animation
can be beneficial for the purposes of visualization, e.g. [5, 35].
The utility of animation has been questioned by Tversky et al.
[34], yet it was acknowledged that animation may be an effective
way of presenting transitions. Robertson et al. [28] compared
animation, trace line, and small multiples visualization on multi-
dimensional data. Animation was found least effective, whereas
small multiples and trace lines were faster than animation, and
small multiples were more accurate. Griffen et al. [12] suggest
that animation can be helpful in discovering space-time clusters.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GI '11, May 25-27 2011, St. John's, NL, Canada
Copyright 2011 ACM 978-1-4503-0693-5/11/05…$10.00.

Animation has also been used for communicating dynamically
evolving data in graphs, which is directly related to our work. We
are aware of three user studies that explored the effects of
difference maps, small multiples, slide shows, and mental map
preservation. Farrugia et al. [10] compared animation and small
multiples on two dynamic graph series. Small multiples were
faster for most tasks. Archambault et al. [3] performed a user
study where they investigated the effect of animation, small
multiples, and mental map preservation for reading graphs that
evolve over time. The study found that overall small multiples
gave better performance than animation, but animation had fewer
errors for some tasks. No effect for preserving the mental map
was found, but this study used graphs with unlabeled nodes. The
same authors also conducted a study to evaluate the effectiveness
of difference maps in comparison to presenting the evolution of a
dynamic graph over time in three interfaces (animation, slide
show, and small multiples) [4]. Evidence was found that
difference maps produced fewer errors when determining the
number of edges inserted or removed from a graph as it evolves
over time. Also, difference maps were preferred on all tasks.

2.4 Text Versioning and Side-by-Side Views
Side-by-side views have been used for visual comparison of
objects long before computers were invented. One popular
modern adaptation is a side-by-side view for comparing text
documents. There are many publicly available tools, such as:
GNU Emacs, Kompare, WinMerge, Araxis Merge, and Scooter
Software Beyond Compare. Some of these are not only capable of
comparing plain text, but can also deal with XML documents, file
directory structures, and even binary files. TreeJuxtaposer [20] is
targeted at comparing large trees and uses side-by-side views.
However, to our knowledge, there are no publicly available tools
for generic diagrams at the moment. A recent study showed that
animation facilitates text document comparison [7], and enables
users to better identify changes between versions.

2.5 Diagram Differencing and Merging
Förtsch et al. [11] presented a survey on differencing and merging
of software diagrams and listed requirements for UML diagram
versioning tools. One of the main requirements identified is a
user-friendly representation. They also point out that it is desirable
for diagrams to be displayed side-by-side with differences being
marked graphically. If not enough space is available, a unified
diagram may be constructed instead. This inspired us to try side-
by-side views for diagram versioning. An approach for comparing
documents based on a single unified diagram was studied by
Dadgari et al. [8]. They evaluated multiple graph differencing
methods and merging interaction techniques qualitatively with a
questionnaire. A translucent view that overlaid the versions was
preferred, but no measure of user performance was assessed.

Software engineering research on UML model versioning is
extensive, e.g. [1, 15, 22, 36]. However, this work focuses more
on theoretical foundations, efficiency, robustness, and correctness.
Often, the work is backed up by case studies using evolving
software projects. Such work is typically not concerned with user
interface issues, a gap that we are trying to address. Visual
comparison of UML diagrams is rarely investigated. Ohst et al.
[23, 24] introduced a unified document approach that highlights
common and specific parts of two diagrams. Mehra et al. [18]
described an approach for visual differentiation. They conducted a
user survey and got good feedback on response time, the approach
to present changes, the support for incremental changes, merging,
and the overall support for diagram-based design activities.

3 THE DARLS SYSTEM
We developed a new system capable of versioning and visualizing
differences between diagrams with a number of techniques. Nodes
and edges are disambiguated with unique identifiers. The system
currently supports differencing and merging of generic and UML

Figure 1. DARLS showing two versions of a diagram, which visualizes course pre-requisites for an undergraduate computer science program.

The visualization shows a difference layer and uses the relative optimal re-layout explained in Section 3.5.

class diagrams. It was implemented in Java using the yFiles Graph
Visualization Library, http://yworks.com. To illustrate the user
interface, see Figure 1, where we use two versions of a course
prerequisite diagram from two subsequent years as an example.

3.1 Accessing Versions and Navigating the Views
The system features side-by-side views of two versions of a
diagram. Zooming with the mouse wheel and panning with the
scroll bars is synchronized between the two main views. Buttons
on the panel allow toggling between the editing and selection
modes. Diagram repositories are accessed through the file menu.
Both side-by-side graphs can be edited and committed back into
the repository. The user can directly access ten versions of the
diagram in the scrolling storyboard. Any version can be compared
against any other version in a repository. Selecting a version from
the storyboard and clicking on the arrow button pointing to the
desired view loads a version into that view.

3.2 The Difference Layer
Here, the differences between the two diagrams in the side-by-
side views are visualized using a transparent underlay pane in the
background of either view, which shows the other diagram. We
call this a difference layer. This is similar to our previous work on
single-view differencing [8], but different from Pounamu [18],
which uses also a single merged view, yet where the objects
common to both compared diagrams are not shown. Our
difference layer is also different from difference maps [4], as it
displays the common nodes and edges between two versions, even
if a node was moved. The rationale is to also enable accept/reject
of node movements. A configuration dialog accommodates
different color schemes. If the visualization gets too cluttered, the
types of objects displayed in the difference layers can be
customized, or they can be disabled completely.

By default, all missing nodes and edges for a diagram are
shown in neutral transparent gray in the difference layer. See e.g.,
COMP 3212 in the right view in Figure 1. Nodes that are common
to both diagrams but shifted, resized, or morphed are visualized
with reduced transparency, e.g. MAST 2090. This implicitly
visualizes all differences between the diagrams, as deleted nodes
show up semi-transparent in the right diagram and changed nodes
are visualized with reduced transparency.

Moreover, if the user selects a node in the right view, the
corresponding node in the left view is shown selected as well,
with different styles depending if the node exists in the other
diagram. The user can customize this, so that either the node on
the foreground and the difference layer is selected, or only the
node on the foreground of the left view is selected. Nodes in the
difference layer in the right view also can be selected by clicking.
This is used for version merging see the next section. Also,
everything described applies to edges as well.

3.3 Version Merging using Selection
The ability to accept and reject graph edits was previously
presented in Pounamu [18]. In our system, a context-sensitive
right-click menu provides easier access to this functionality. See
the popup next to COMP 3211 in the right view in Figure 1. In
our system, a reject operation can undo the creation or deletion of
nodes and/or edges, shifting, and morph/resize operations on
nodes. For example, if the user “rejects” the change in Figure 1,
node COMP 3211 and its adjacent edge connecting to node
COMP 2021 will be re-instantiated in version 14. As other nodes
are also selected, COMP 3530 will be re-instantiated and MAST
2090 will be shifted down to the same location as in version 13.
Figure 5 shows the state of the diagrams after the reject operation.

3.4 Animation and Other Techniques
When the play/pause button is pressed in the top panel the
differences between the diagrams in the two views are animated in
three phases. First, removed objects fade out, then moved objects
are shifted from the old to their new locations with morphed
changes in shape and color, and finally new nodes and edges fade
in. The sequence and concurrency of these events can be
customized. Also the system can highlight new nodes and edges
with another distinct color (blue by default), once all animations
end, to assist the user in identifying changes. Nodes that changed
labels, such as COMP 3201/ENGR 3201, have a call-out added
for the change. An additional option gives access to an animation
where new nodes and edges blink in a distinct color (red by
default), once the first animation ends. Previously, Plaisant et al.
[25] proposed decomposing animation in their SpaceTree system
into three steps: trim, translate, and grow, which is similar to our
method. Heer et al. [13] demonstrated that staged animations are
favored over “all at once” animations for statistical visualizations.

3.5 Relative Graph Re-Layout
As more nodes and edges are added to later versions of a diagram
it may get difficult to differentiate and merge different versions,
even if the user has access to all provided features, as the layout of
the graph may have changed (too) much. Therefore, we added an
option to interactively re-layout a diagram relative to another to
minimize visual differences between them. We implemented two
relative re-layout algorithms: incremental, which preserves the
locations of nodes, and optimal, which rearranges nodes to better
use the screen space. Both layout methods keep the positions of
nodes and edges common to both diagrams stable and thus
preserve the mental map. We based our implementation on the
Hierarchic and Incremental Hierarchic Layouters in yFiles and
adapted these to our diagram differencing task as follows.

By default, we re-layout the left diagram relative to the right
because we assume the diagram in the right is the latest version.
The incremental re-layout algorithm first adds all nodes from the
left graph that are missing in the right graph, to that right graph to
generate a composite graph. It then partitions space into horizontal
lanes and fixes the positions of the common and newly added
nodes. The remaining nodes are assigned to these lanes so that the
number of edges pointing upward is minimized, while keeping the
edges short. Then these nodes are arranged within their lanes so
that the number of edge crossing is also minimized, and finally,
they are arranged to minimize edge bends. Then the layout of the
composite graph is copied to the left and right graphs, but only for
those nodes and edges that “belong” to the respective graph.

The optimal re-layout algorithm is similar to the one described
above but with two differences: nodes are not fixed in place and
node and edge placement heuristics can be specified through a
menu. Figure 1 demonstrates two diagrams where optimal re-
layout was performed. Please note that COMP 2021 and MAST
2090 were manually raised higher after the re-layout.

Currently, there is no propagation effect to keep the layout
consistent across versions if merging or other editing occurs.

4 USER STUDIES
We ran two user studies on the new system. Both revolved around
diagram differencing using the techniques described above. There
were a number of goals for the studies. The primary goal was to
investigate the fitness of difference layers for diagram merging. In
contrast to previous work [8], we also wanted to quantify the user
performance of diagram differencing techniques. We also wanted
to investigate the incremental and optimal re-layout techniques.
Finally, we wanted to confirm the validity of the proposed

requirement by Förtsch et al. [11], which states that diagrams
should be displayed side-by-side with marked differences.

A secondary consideration was that the study by Archambault
et al. [3] was performed on graphs with no node or edge titles.
Moreover, participants had to answer multiple-choice questions,
instead of asking participants to select nodes and edges directly.
This effectively removed any visual search time. The authors
argued that such questions are preferable as animated nodes may
move rapidly, which would disadvantage some layouts. Therefore,
and as confirmed by the authors, their results cannot be
generalized to tasks that involve named nodes. We wanted to
address this limitation, as named nodes are important in many
applications. The unenhanced dual view technique in our first user
study targets this visual search time issue.

Previous studies also investigated effects globally across
multiple versions of a graph by displaying everything
simultaneously. Our new difference layering technique compares
only two versions of a diagram. With our incremental layout the
locations of nodes remain stable across different versions. Hence,
we investigate the effect of presenting the version pairs
sequentially in this condition, to see if participants can better trace
the evolution of the graph. In the first user study, we also ask
participants to select nodes and edges, as we want to observe how
the techniques affect the understanding of the variations in layout.
Finally, unenhanced side-by-side text differencing is tedious and
we wanted to investigate if this is also true for diagrams.

4.1 The Diagrams
In both studies we used versions of a diagram, which depicts the
evolution of an anonymized subset of course prerequisites in our
Computer Science program over the past two decades. This is a
classic real-world application for diagram evolution. We excluded
almost all instances without a change in prerequisites, but kept
one to serve as a control. In total, we ended up with 12 versions of
the diagram. From among these we selected a set of six version
pairs, which cover all qualities, such as the magnitude of change
in the number of nodes and edges: 1→3, 3→4, 4→5, 5→8,
8→10, 10→12. For brevity, we will refer to them as pairs 1 to 6
from here on. The second pair did not have any changes and is
designed as a control. The diagrams appearing in the left view had
on average 26.5 nodes (δ=1.52) and 23.66 edges (δ=1.21), and
27.33 nodes (δ=1.21) and 24.17 edges (δ=1.47) in the right.
Details of the diagrams along with figures and videos of tasks are
available at the paper website
http://sites.google.com/site/thedarlssystem. As we wanted to focus
on the understanding of graph structure, we did not include
changes in node titles in the studies.

4.2 Participants
16 paid participants (5 females) were recruited for both studies.
The participants were between 18 and 35 years old with an
average of 23.82. 4 participants were left handed but all chose to
use their right hand for the experiments. 7 participants indicated
that they were aware or had previous experience with text,
diagram, source code differencing, or versioning tools. One
participant used them regularly. None of the participants had
previous experience with DARLS. None of the participants were
colorblind or had difficulty reading small text. Participants
reported an average of 6.1 hours (δ=2.8) of daily mouse use.

All participants performed both studies in counterbalanced
order, but due to an implementation issue, the data for the first 4
participants in the second study had to be discarded.

4.3 Apparatus
The user study was conducted using a high-end laptop with a USB
wheel mouse and a 22” external display at 1920×1080 in full-
screen mode. All events, timings and responses were logged.

4.4 Pilot Study
In a pilot study we asked 4 unpaid participants to select objects
that were added in a newer version of the diagram, similar to
study I below. The results indicated that the dual-view condition
without layering was the slowest overall. Direct change
highlighting was the best, but here the task degenerated to
selecting all highlighted targets, without requiring any
understanding of the diagram evolution. Hence, we removed this
condition from User Study I. This may limit ecological validity, as
one wants the system to highlight differences. But we are unaware
of a good way to avoid this degeneration issue in experiments.

We also observed that when participants didn’t read the node
labels, certain tasks became unsolvable. A good example is the
unenhanced pair 4 in the optimal layout, where the added MAST
1090 node was often confused with the deleted MAST 2090 node
due to both nodes appearing at the same level next to each other
and having the same number of edges. As the result, some
participants could not identify the change. Hence, we instructed
participant to carefully pay attention to node labels in the studies.

4.5 User Study I
This user study investigated how different visualization
techniques help in understanding the evolution of diagrams with
matching layout. At any time two versions of a diagram were
shown and participants were asked to select all nodes and edges
that were added to the newer version relative to the older one.

4.5.1 Experimental Design
We used a 4x2x6 repeated measures design (4 differencing
techniques, 2 layouts, 6 version pairs). The four tested
differencing techniques were: single view with animation, single
view with toggling between versions, dual view with difference
layer, dual view without difference layer. The layouts used were
incremental and optimal. In the incremental condition we used the
layout as created by the original designer of the diagrams and only
re-arranged changes incrementally while keeping the original
node positions. As the original layouts were created manually in
an incremental fashion, the node positions for any pair matched in
sequence. The optimal method re-arranged the whole layout and
the settings for that method are summarized on the paper website.

The intent was to compare four distinct differencing techniques
in a use case with matching node positions, while also
investigating the effect of layout techniques. Especially in the dual
view technique with no difference layer, no visual aids are
available to participants, and any effect of layout should thus be
most prominent in this condition.

4.5.2 Procedure
When the experiment started all layouts for all version pairs were
calculated and the zoom level was set so that zooming and/or
panning was not necessary. In fact it was disabled to remove a
potential confound. This also guaranteed consistent size of nodes
and edges across all layouts and diagrams. In the incremental
layout condition we presented pairs sequentially to allow
participants to trace the evolution since this is complimentary to
fixing the node positions. Otherwise, version pairs were presented
randomly without replacement to combat learning effects.
Technique and layout were also counterbalanced, but we blocked
the order of techniques to reduce participant confusion.

In the single-view animation condition participants were asked
to click on the nodes and edges that were new to the latest version
of the two diagrams displayed. Participants could click on an
object again to toggle selection. Moreover, a “deselect all” button
was available in the top panel. Rectangle and lasso selection
methods were not available to limit the effect of different
experience and/or selection strategies. For the animation condition
new nodes and edges were faded in and the deleted ones faded out
automatically upon first display. A re-play of the animation
happened whenever the users pressed the <LEFT ARROW> key.
Pausing was not provided due to the short animation duration.
Selection of nodes and edges was enabled even during the
animation. During the pilot study all animations lasted about 2 s,
and users found this duration appropriate. In all single-view
conditions only the right view was used and nothing was
displayed on the left side. At any given time, no more than 12
objects were animated, see the paper website for details.

In the single-view toggling condition, holding the
<LEFT ARROW> key down switched the right view to display the
previous version of the diagram. Just like in the animation
condition participants were allowed to toggle between versions as
many times as needed. Participants were instructed to select new
nodes and edges when the newer version was displayed. The dual-
view without difference layer condition was basically the dual-
view equivalent of single-view toggling. The two versions of the
diagram were displayed side-by-side and participants had to select
the new nodes in the right view. The dual-view with difference
layer condition featured a difference layer in both views, which
illustrated all differences. Since the positions of common nodes
matched due to the relative re-layout, only added and deleted
objects were displayed on the difference layer. Moved, i.e. shifted
nodes, were excluded. When the participant clicked on any object
in the right view, which was visible in the difference layer in the
left view, the selection state is also shown on that left view.

Participants were asked to press the <RIGHT ARROW> key when
they thought that they were done with the task. If the current state
did not match the expected result, the window blinked red and a
sound was played. Participants would then have to modify their
selection and submit the result again. We logged every such
attempt. The submit key was disabled unless at least one change
to the selection was made to prevent abuse of this feature. Based
on observations from the pilot and if a participant was not able to
complete the task within 2 minutes, the right side view would
blink in yellow, a different sound would play and the next task
would start. If a participant selected everything correctly, the right
view would blink in green upon the key press and the next task
would start. Whenever there was a change in the differencing
technique an appropriate message box would pop up with
instructions. Participants were allowed to take a break during that
time. Logging only resumed once they clicked the <OK> button.

In the pilot study we found that it is important to inform the
participants before the study that there be could a situation when
there is no change in the diagram, such as version pair 2, and we
informed participants accordingly. We also stressed in the initial
training that common nodes always have matching positions.

4.5.3 Results
No ordering effects were observed. For brevity, insignificant
results or groupings are reported only selectively below. The main
effects of differencing technique, F3,45 = 104.06, p < .0001, and
version pairs, F5,75 = 53.15, p < .0001 on task completion time
were significant. The layout factor was insignificant,
F1,15 = 0.03, ns. There was also a significant interaction between
differencing technique and version pair, F15,225 = 6.93, p < .0001

and layout technique and version pair, F5,75 = 14.90, p < .0001.
The interaction between differencing technique and layout was
not significant, F3,45 = 1.18, p > .05, thus any hypothesis about the
potential effect of layouts was not confirmed.

Animation TogglingDual viewDiff. layer

70

10

20

30

40

50

60

0

Differencing Technique

M
ea

n
Ti

m
e

Animation Diff. layer Dual view Toggling
0.0

0.5

1.0

1.5

Differencing Technique

M
ea

n
E

rr
or

s

Figure 2. Mean time and errors for the techniques in User Study I.

Error bars: ± 1 SE.

A Tukey-Kramer analysis revealed that dual view with no
difference layer was significantly slower (average 65.5s) than any
of dual view with difference layer (18.3s), toggling (21.4s) and
single view with animation (23.3s), see Figure 2 (left). Another
Tukey-Kramer analysis was performed to detect version pair
groupings. Pair 2 (10.7s), i.e. the unchanged one, was the fastest
and different from the group of pairs 3 (21.4s) and 5 (30.3s),
which again was different from the group with pairs 1 (50.6s), 4
(50.7s) and 6 (43.7s). Analysis on the interaction between
differencing technique and version pairs revealed that the dual
view without differences was slowest overall, except for pair 2.

A Tukey-Kramer analysis on the interaction between layout
technique and version pair revealed no difference between
incremental (6.1s) and optimal (7.2s) layouts on pair 2, the one
without differences. However, pair 6 showed a marked interaction
effect. Here, incremental layout was significantly slower (40.2s)
than the optimal one (30.9s). To investigate this in more detail, we
analysed the frequency of false negatives for each of the two
layouts. We found that for the incremental layout of pair 6, the
top-ranked false negative nodes were: COMP 3403 (64 counts),
COMP 3481 (47) and COMP 3214 (45). The same nodes in the
optimal layout were also ranked at the top, but with exactly 12
counts each. The top-ranked false negative edges in the
incremental layout were: COMP 2031→3215 (40 counts),
COMP 3213→ 3481 (32). The same edges in the optimal layout
were also top at the top and had counts of 21 and 28 respectively.
We did not perform the same analysis on false positive nodes and
edges due to insufficient sample size.

We used the number of “submit” attempts as a measure of error
rate. For these, the main effect of differencing technique,
F3,45 = 25, p < .0001 was significant, but layout was not,
F1,15 = 0.06, ns. Tukey-Kramer revealed that dual-view with no
difference layer had the most attempts (1.16) on average, which
was different from the group of dual view with difference layer
(0.23), toggling (0.43), and animation (0.43), see Figure 2 (right).

4.5.4 Feedback from Participants
Participants were asked to rank each of the four diagram
differencing techniques on a Likert scale from 1 to 7 (7 being the
best). The results are summarized in Figure 4 (left).

In freeform feedback we received several interesting comments.
One participant pointed out that when the conditions changed, it
took a few trials to get used to the new one, despite the explicit
instructions on each condition change. Another stated that the
greyed objects in the difference layer “caught his eye”, but that he
found animation confusing. Yet another identified the dual-view
condition without a difference layer as particularly hard, but got
only gradually used to the difference layer visualization. One

participant pointed out that toggling was somewhat confusing.
Another participant said that the dual view with the difference
layer was the easiest to use, as it was easier to see what was
missing. The same participant also stated that toggling made it
easier to identify missing parts and animation was sometimes
confusing. Another found animation more difficult as he kept
choosing the nodes that were removed instead of the new nodes.

4.5.5 Discussion
Dual view without difference layer was the slowest technique,
which is not surprising. Similar to text differencing, showing two
versions side-by-side does not make it easy to spot differences.
On the other hand and as underscored by the pilot, highlighting
differences makes identifying them easy, but helps little for
understanding changes. Overall, the results illustrate that toggling
and animation are good techniques which are well liked, but not
by everybody. For example, we noticed that some participants got
confused about which state permitted selection in the toggling
condition. This was also reported in the feedback.

No significance was found for the layout factor. Thus,
presenting pairs sequentially with incremental layout either did
not help or had only an insignificant effect. The effect of
differencing techniques on layout was also insignificant. The
significant interaction with the version pairs indicates that
rigourously preserving node positions may even be detrimental to
understanding diagram evolution. One issue is that this can cause
node overlap, which leads to participant complaints. However,
diagram creators may need this option, so it cannot be discounted
completely. To investigate the interaction of layout and version
pair we took a closer look at pair 6 diagrams and found that
participants missed the same nodes and edges more often than any
other pair in both layouts. However, the frequency of misses was
much higher with the incremental layout. The two most frequently
missed nodes have no edges attached. In the optimal layout these
two nodes were placed in a very conspicuous cluster at the
bottom. For edges the same pattern was observed. We speculate
that the longer average edge length in the incremental layout
and/or more edge crossings and/or the absence of edge bridge
connectors resulted in higher miss rates. Yet, this may also point
to fundamental limitations of incremental layout techniques.

In hindsight, we should have considered shorter animations.
Transition intervals of 0.25 to 1 s have been found insignificant in
zooming interfaces [30]. This finding may apply to our tasks, too.

4.6 User Study II
This user study compared two visualization techniques to identify
shifted nodes in two versions of a diagram with non-matching
layout. Participants were asked to select nodes that moved in the
newer version of the diagram relative to the older version. Here,
selecting edges was not investigated.

4.6.1 Experimental Design
We used a 3x2x6 repeated measures design (3 techniques, 2 node
randomization levels, 6 version sets). The 3 tested techniques
were: single-view animation, dual view with difference layer, and
the combination of dual view with difference layer with
animation. The motivation for including the difference layer is the
reject/accept technique in DARLS. Unlike the first user study we
did not include view toggling or unenhanced dual views as initial
evaluations showed that those conditions take too much time to be
used in our experiment. For this study we first laid out each
diagram with the optimal hierarchical re-layout algorithm with the
same node placement heuristics as in the first user study. Then we
used a graph randomization algorithm, which shifts a percentage

of random nodes in random directions while retaining a minimal
distance constraint between nodes to prevent overlap. For
simplicity, our algorithm does not employ any node placement
heuristics and does not optimize for edge crossings or bends.
However, we do not believe this is a major issue since our goal
was to simulate scenarios when a user rearranges nodes in a
diagram, which may generate substantial edge crossings. We
shifted 22% or 44% of all nodes. We used the same six version
sets as in the first study. We also used the same randomization
seeds for all layouts to keep them consistent across participants.
Counterbalancing was done similarly as in the first user study.

The intent of the design was to compare our difference layer
method with animation and to see if participants would use our
method if given the choice between the two. Initially, we intended
to include more randomization levels but in the interest of keeping
the experiment length reasonable we selected to use only two.

4.6.2 Procedure
Similar to the first user study, participants were allowed to select
nodes while they were being animated. The <LEFT ARROW> key
was also available for (re-)playing the animation in the single and
dual-view animation conditions. The dual-view with difference
layer condition was the same as in the first study. We informed
participants during the training session that one possible strategy
is to use the difference layer to match the selection of the nodes
on the foreground in the right view with the reduced yellow color
nodes on the background in the left view. Pair 2 was the one with
the no structural changes and has 28 common nodes. This means
that at any given time no more than 28×44%=12 nodes were
animated. In the combined condition, animation plays
automatically when new diagrams are loaded to remind
participants that they can use animation. All the remaining aspects
of the procedure were identical to the first user study.

Animation Combined Diff. layer

Differencing Technique

10

20

30

0

M
ea

n
Ti

m
e

M
ea

n
E

rr
or

s

0.00

0.25

0.50

0.75

Animation Combined Diff. Layer

Differencing Technique

1.00

Figure 3. Mean time and errors for the techniques in User Study II.

Error bars: ± 1 SE

4.6.3 Results
No ordering effects were observed. The main effects of technique
F2,22 = 11.08, p < .0005, randomization level, F1,11 = 11.57,
p < .001, and version pair, F5,55 = 4.15, p < .005 on task
completion time were significant. The interaction between
randomization level and technique was also significant,
F5,55 = 4.94, p < .001. A Tukey-Kramer analysis revealed that the
difference layer alone (average 28.9s) was slower than both
animation (15s) and animation with difference layer (14.3s). The
22% node randomization level (14.5s) was different from the
44% level (24.3s), see Figure 3 (left). The error rate data in this
experiment was not normally distributed, therefore we decided to
just report the averages, see Figure 3 (right).

We used a Kruskal-Wallis test on the number of re-play key
presses for both animated conditions, as this data was not
normally distributed. This identified a significant difference,
H1 = 38.09, p < .0001. Animation alone had an average of 174
button presses while the animation with difference layer had 114.

4.6.4 Feedback from Participants
Participants were asked to rank the techniques similar to User
Study I. The results are summarized in Figure 4 (right).

Animation Diff. layer Dual view Toggling
Differencing Technique

1

7

6

5

4

3

2

M
ea

n
R

an
k

Animation Combined Diff. layer

Differencing Technique

1

7

6

5

4

2

3M
ea

n
R

an
k

Figure 4. Participants’ ranking of the differencing techniques in

User Study I (left), User Study II (right). Error bars: ± 1 SE

Here are some of the most mentionworthy comments from the
freeform feedback. One participant stated that animation helped to
see the changes and moving objects could be identified even when
he was not directly looking at them. Another participant found it
difficult in the difference layer condition to find a node shifted
slightly because the background node would be hidden under the
foreground node due to overlap. Others pointed out that nodes that
move little in the animation condition are harder to identify as
well. Several participants said that for selecting the moved nodes
it was easiest to use animation. They also clicked on nodes as they
moved. Relative to that they pointed out that the difference layer
method was harder to use, but still allowed one to check the
“results” of the animation. One participant found the animation
speed a bit slow. Another participant said that it would be nice to
have a “shadowed” mouse cursor in the “dual-view” panel.

4.6.5 Discussion
Although the difference layer method itself was slowest, it still
contributed positively overall, as the combined method was both
fastest overall, although not significantly so, and most preferred.
Another indication for the benefits of the difference layer is the
result on the re-play key presses. Also, and as revealed by the
rankings, some participants found this the easiest technique.

During the experiment we noted that some participants were
confused about how to use the difference layer and were either
trying to select objects on the background of the right view or
objects that were not different. This indicates that this method
might not work well if both views are fully interactive. On the
other hand, we also saw that animation alone is not a perfect
solution to easily identify nodes that moved just a little. To
investigate this, we analyzed all instances where participants
failed to identify a moved node. For all 679 false negatives, the
average movement distance was 83 pixels while the median was
only 69 pixels. A node in the experiment was 30x80 pixels large.
Since the median is smaller than the mean we can argue that
participants had more trouble with nodes that moved less. This
indicates that none of the techniques are perfect in isolation.

4.6.6 Overall Discussion
In our first experiment where node positions matched, the dual-
view technique with difference visualization was the fastest
technique overall and had the least amount of errors. It was also
ranked highest in terms of user preferences. In our second study
with partially non-matching node positions, animation and the
combination with the difference visualization technique was best.

It is not easy to compare our work directly with Archambault
et al. [3, 4], as many details are different. But we do not believe
that our findings contradict their work. Our participants, for

example, also preferred the difference layers in the first study and
made less errors with them. However, the difference layer was not
preferred in our second experiment. Archambault et al. also stated
in earlier work that a small number of timeslices (such as two) are
not enough to represent the evolution of a graph adequately. Our
findings generalize this insight to diagrams with named nodes.

Both of our layout methods were designed to preserve the
mental map. The optimal layout is based on aesthetics, but the
incremental layout preserves the mental map more faithfully.
Hence, the incremental condition in the first study would show the
effect of mental map preservation best in our context. However,
and as we did not find significant effects of layout, this suggests
that mental map preservation is not effective, similar to [3].

Heer and Robertson [13] found that animated transitions
between statistical visualizations work well and that staged
transitions are preferred. Similarly, our first study suggests that
animated transitions in diagram differencing tasks are preferred.

Naturally, the results of the first user study are only directly
valid for hierarchical diagrams laid out top to bottom. Our results
may not generalize to other types of diagrams. Many other factors
can influence the results and we even observed an interaction
between layout and the version pair. On the other hand, we
believe the results of the second study are more generalizable,
because they depend less on the layout technique.

5 CONCLUSION AND FUTURE WORK
We presented a new system for diagram difference visualization
and merging. It uses animation, dual views, a storyboard, relative
re-layout, and difference layers. We ran two user studies to
investigate the benefits of the system and found that naïve dual-
view visualization is not desirable. The dual-view option with a
difference layer was most preferred for comparing diagrams with
matching node positions. For diagrams with non-matching
positions we found evidence that animation is beneficial, but that
the combination with a difference layer was liked best. In
summary, we can say that our difference layer technique is useful
and is a good complement to animation. This has positive
implications for the diagram merging method introduced above.

Some of our findings indicate that the interaction between
differencing techniques and layouts is a rich area for future work.
In other words, a closer look is needed at the combined effect of
layout techniques, such as our optimal layout method, and specific
visualization features. Another direction is the generalization of
the work to UML diagrams, with their information-rich nodes and
edges. In the future we also plan to investigate the storyboard in
more details, e.g. if it can be directly used for difference
visualization, similar to small multiples. One idea is to use
highlighting on the small views in combination with difference
layers in the large ones. Yet another direction is to investigate
merging. Our findings are positive for animation, but more can be
done. With larger sets of changes, animating all changes at once
may be counterproductive. In the future, we want to investigate
whether it makes general sense to break change visualizations into
smaller sets for easier comprehension. Currently the system is
targeted at diagrams with up to 50 nodes. However, we do not see
any major obstacles to enhancing the system to deal with larger
diagrams, such as the hierarchies described in [6, 20].

REFERENCES
[1] M. Alanen and I. Porres, Difference and union of models. UML

2003, 2-17.
[2] D. Archambault, Structural differences between two graphs through

hierarchies. Graphics Interface 2009, 87-94.

[3] D. Archambault, H. Purchase and B. Pinaud. Animation, small
multiples, and the effect of mental map preservation in dynamic
graphs. IEEE Transactions on Visualization and Computer
Graphics, 17(4), 539-552, 2011.

[4] D. Archambault, H. Purchase, B. Pinaud. Difference map readability
for dynamic graphs. Graph drawing, Springer 2011, 50-61.

[5] L. Bartram and C. Ware Filtering and brushing with motion.
Information Visualization, 1 (1), 66-79, 2002.

[6] S. K. Card, B. Sun, B. A. Pendleton, J. Heer and J. W. Bodnar, Time
tree: Exploring time changing hierarchies. Symposium On Visual
Analytics Science And Technology 2006, 3 -10.

[7] F. Chevalier, P. Dragicevic, A. Bezerianos and J.-D. Fekete, Using
text animated transitions to support navigation in document histories.
CHI 2010, 683-692.

[8] D. Dadgari and W. Stuerzlinger, Novel user interfaces for diagram
versioning and differencing. British HCI 2010.

[9] S. Diehl and C. Görg, Graphs, they are changing. Graph Drawing
2002, 23-30.

[10] M. Farrugia and A. Quigley Effective temporal graph layout: A
comparative study of animation versus static display methods.
Journal of Information Visualization, (to appear), 2011.

[11] S. Förtsch and B. Westfechtel, Differencing and merging of software
diagrams: State of the art and challenges Workshop on Comparison
and Versioning of Software Models 2008, 7-12.

[12] A. L. Griffin, A. M. MacEachren, F. Hardisty, E. Steiner and B. Li A
comparison of animated maps with static small-multiple maps for
visually identifying space-time clusters. Annals of the Association of
American Geographers, 96 (4), 740 - 753, 2006.

[13] J. Heer and G. Robertson Animated transitions in statistical data
graphics. IEEE Transactions on Visualization and Computer
Graphics, 13 (6), 1240-1247, 2007.

[14] J. W. Hunt and D. McIlroy, An algorithm for differential file
comparison. Technical Report, AT&T Bell Laboratories, 41, 1976.

[15] U. Kelter and M. Schmidt, Comparing state machines. Workshop on
Comparison and versioning of software models 2008, 1-6.

[16] D. Kurlander and S. Feiner A visual language for browsing, undoing,
and redoing graphical interface commands. Visual Languages and
Visual Programming, 257-275, 1990.

[17] S. Maier, M. Minas, Interact. diagram layout. CHI 2010, 4111-4116.
[18] A. Mehra, J. Grundy and J. Hosking, A generic approach to

supporting diagram differencing and merging for collaborative
design. Automated Software Engineering 2005, 204-213.

[19] C. Meng, M. Yasue, A. Imamiya and X. Mao, Visualizing histories
for selective undo and redo. Proceedings of the Third Asian Pacific
Computer and Human Interaction 1998, 459.

[20] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang and Y. Zhou
Treejuxtaposer: Scalable tree comparison using focus+context with
guaranteed visibility. ACM Trans. Graph., 22 (3), 453-462, 2003.

[21] T. Nakamura and T. Igarashi, An application-independent system for
visualizing user operation history. UIST 2008, 23-32.

[22] E. Ogasawara, P. Rangel, L. Murta, C. Werner and M. Mattoso,
Comparison and versioning of scientific workflows. ICSE Workshop
on Comparison and Versioning of Software Models 2009, 25-30.

[23] D. Ohst, M. Welle and U. Kelter, Difference tools for analysis and
design documents. Software Maintenance 2003, 13.

[24] D. Ohst, M. Welle and U. Kelter Differences between versions of
uml diagrams. SIGSOFT Softw. Eng. Notes, 28 (5), 227-236, 2003.

[25] C. Plaisant, J. Grosjean and B. B. Bederson, Spacetree: Supporting
exploration in large node link tree, design evolution and empirical
evaluation. Information Visualization 2002, 57.

[26] H. C. Purchase, E. Hoggan and C. Gorg, How important is the
"mental map"?: An empirical investigation of a dynamic graph
layout algorithm. Graph drawing 2007, 184-195.

[27] H. C. Purchase and A. Samra, Extremes are better: Investigating
mental map preservation in dynamic graphs. Diagrammatic
Representation and Inference 2008, 60-73.

[28] G. Robertson, R. Fernandez, D. Fisher, B. Lee and J. Stasko
Effectiveness of animation in trend visualization. IEEE Transactions
on Visualization and Computer Graphics, 14 (6), 1325-1332, 2008.

[29] P. Saffrey and H. Purchase, The "mental map" versus "static
aesthetic" compromise in dynamic graphs: A user study.
Australasian User Interface 2008, 85-93.

[30] M. Shanmugasundaram and P. Irani, The effect of animated
transitions in zooming interfaces. Proceedings of the working
conference on Advanced visual interfaces 2008, 396-399.

[31] M. Shanmugasundaram, P. Irani and C. Gutwin, Can smooth view
transitions facilitate perceptual constancy in node-link diagrams?
Proceedings of Graphics Interface 2007 2007, 71-78.

[32] S. L. Su, Visualizing, editing, and inferring structure in 2D graphics.
UIST Adjunct Proceedings 2007, 29-32.

[33] S. L. Su, S. Paris, F. Aliaga, C. Scull, S. Johnson and F. Durand,
Interactive visual histories for vector graphics. Technical Report,
MIT-CSAIL-TR-2009-031.

[34] B. Tversky, J. B. Morrison and M. Betrancourt, Animation: Can it
facilitate? Int. J of Human-Comp. Studies, 57(4), 247-262, 2002.

[35] C. Ware and R. Bobrow Motion to support rapid interactive queries
on node-link diagrams. ACM Trans. Appl. Percept, 1(1), 3-18, 2004.

[36] Z. Xing and E. Stroulia, Differencing logical UML models.
Automated Software Eng., 14 (2), 215-259, 2007.

Figure 5. The state of the diagrams after the reject operation in Figure 1 is invoked.

	1 Introduction
	2 Related Work
	2.1 Mental Map
	2.2 Difference Map, Small Multiples and Storyboard
	2.3 Animation
	2.4 Text Versioning and Side-by-Side Views
	2.5 Diagram Differencing and Merging

	3 The DARLS System
	3.1 Accessing Versions and Navigating the Views
	3.2 The Difference Layer
	3.3 Version Merging using Selection
	3.4 Animation and Other Techniques
	3.5 Relative Graph Re-Layout

	4 User Studies
	4.1 The Diagrams
	4.2 Participants
	4.3 Apparatus
	4.4 Pilot Study
	4.5 User Study I
	4.5.1 Experimental Design
	4.5.2 Procedure
	4.5.3 Results
	4.5.4 Feedback from Participants
	4.5.5 Discussion

	4.6 User Study II
	4.6.1 Experimental Design
	4.6.2 Procedure
	4.6.3 Results
	4.6.4 Feedback from Participants
	4.6.5 Discussion
	4.6.6 Overall Discussion

	5 Conclusion and Future Work

