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Abstract. Synthetic imagery has often been considered unsuitable for
demonstrating the performance of vision algorithms and systems. We
argue that (despite many remaining di�culties) simulation and com-
puter graphics are at a point today that make them extremely useful for
evaluation and training, even for complex outdoor applications. This is
particularly valuable for autonomous and robotic applications, where the
lack of suitable training data and ground truth information is a severe
bottleneck. Extensive testing in a simulated environment should become
an integral part of the systems development and evaluation process to
reduce the possibility of failure in the real world. We describe ongoing
e�orts towards the development of an \Immersive Perception Simulator"
and discuss some of the speci�c problems involved.

1 Introduction

Vision systems for autonomous and reactive robotic applications need to perform
reliably under a variety of conditions. Since these systems are quite complex,
formal veri�cation methods usually do not exist and extensive testing provides
the only way to ascertain the required performance. In a typical robot vision de-
sign process, testing of individual system components is limited to pre-recorded
images and image sequences that are processed in a passive fashion. Closed-loop
testing can only be performed after the complete system has been integrated
and deployed on the real robot. Frequently, the task environment or even the
actual robot is not accessible at all during system development, e.g., in many
space applications. In the past, we also have seen several outdoor demonstra-
tions of autonomous robots end in embarrassing or disastrous ways. Moreover,
systems equipped with adaptation and learning, which are becoming increasingly
important in computer vision, often require many training runs and additional
feedback from the environment to converge to their optimal performance. Obvi-
ously, the lack of test data (particularly those with corresponding ground truth
data) and realistic testing facilities constitutes a severe bottleneck in the vision
system design process.
Thus two important needs exist:

{ A large number of test cases (perhaps two orders of magnitude more than



Fig. 1. Synthetic image demonstrating the degree of realism and sophistication avail-
able from current simulators. This example includes physics-based object and surface
models, shading, focusing e�ects, motion blur, and atmospheric conditions. Although
some e�ects are not modeled by this simulator, a perception system that performs
badly on this kind of imagery can be expected to fail in a similar situation in reality
(image source: Evans & Sutherland).

what exists now) with access to ground truth information is necessary for
tuning and validating vision systems.

{ It is necessary to have an environment that allows for the testing of complete
vision systems before deployment, thus eliminating the high risk of system
damage or mission failure.

The key question is, where should all these test cases come from? A promising
solution to this problem is the use of advanced simulation techniques. Simulation
and computer graphics are at a point today that allow the generation of a large
variety of scenes realistic enough to fool the human eye. (Figure 1). Airplane
pilots around the world spend thousands of hours inside ight simulators to get
prepared for their sensitive tasks. Why shouldn't the same technology be used
to prepare arti�cial vision systems? Of course, there have been pioneering e�orts
at various places, where di�erent kinds of environmental simulation have been
was applied for speci�c vision tasks, using special-purpose tools, and at di�erent
stages of the vision development process. Here we want to make a case for the
consistent and pervasive use of simulation at all stages of the computer vision
design process. We believe that the two main reasons for the underdeveloped
role of simulation in computer vision are: (a) a wide skepticism among vision
researchers against synthetic imagery in general and (b) the lack of an easy-
to-use and widely available simulation environment that would avoid expensive
\home-brew" solutions.

The reservations against synthetic imagery in the vision community are rea-
sonable if one considers the state-of-the-art in image synthesis ten years ago.



Most images then simply looked \too clean" and synthetic to reasonably repli-
cate the di�culties of image analysis on real imagery. Surfaces were usually
simple (blocks world) and without texture, and the generation of sophisticated
and complex outdoor scenes was beyond imagination. Today things are di�erent
and we believe the skepticism against synthetic imagery in general is mostly ob-
solete. It is still important, however, to make sure that the results obtained from
simulation are relevant in the corresponding reality, i.e., that the simulation re-
sults best match physical reality and are not biased to simplify computer vision
algorithms. There will always be details in reality that cannot be modeled in a
synthetic world, because any model is only an abstraction of reality no matter
how speci�c it is. Thus we cannot assume that a (vision) system which performs
awlessly in a simulated world is guaranteed to succeed in reality. However (as
applies to airplane pilots) if it does fail in a simulator test, then it will likely
have trouble in the real world!

In the following, we describe our work towards an \immersive" simulation
environment for perception-based robotic applications. While the focus is on
\computer vision" throughout the text, most arguments equally apply to other
forms of sensory inputs, including lasers, radar, infrared, and (to some extent)
sound.

2 Why Simulation?

Simulation has always played some role in image processing, computer vision,
and control system engineering. Speci�c vision examples are the ALV testbed at
the University of Maryland [2], the map-based simulation environment developed
at Hughes [8], and the IUA simulator at UMASS [15]. Yet, until now, there has
been no simulation environment available that could support the complexity of
complete perception and control systems, and provide the required realism at
the same time. We are therefore developing a comprehensive simulation system
with capabilities that are critical for solving the complicated design and testing
problems that are typical in computer vision. The foremost expectations from
this approach are:

a. Simulation allows extended testing in arbitrary environments, under changing
environmental conditions, and in extreme situations that may be rarely en-
countered in reality but may be crucial for system operation. The simulations
can be run unsupervised, at any time of day, under any weather conditions,
and on several computers in parallel. The increased number of situations and
test cases explored in this way should improve system reliability dramatically.

b. Ground truth information, essential for validating many vision tasks, is avail-
able at any time. In contrast, currently used pre-recorded image data come
either with very limited ground truth data, if any.

c. Adaptation and learning at all vision system levels can be performed e�-
ciently and autonomously. Large sets of training examples can be processed
without human intervention in both supervised and unsupervised modes.



d. Realistic testing of individual modules in a complete system environment is
possible at a very early phase, even when the real robot or other parts of
the system (e.g., sensors) are unavailable. The evaluation of system design
alternatives is possible without actual deployment on the robot.

e. The costs for designing, building, and running the robot can be reduced.
Simulation results will generally inuence the robot's design, thus avoiding
costly redesigns later in the process. Further, the transition between testing
and deployment of the system can be streamlined. Usually, transferring a
vision system from the lab onto the real robot requires a major logistic e�ort.

f. Processing hardware requirements and real-time capability can be estimated
much earlier in the design process. Usually, hardware performance require-
ments are di�cult to estimate before the complete system is running. Real-
time behavior can be simulated even when the required high-speed hardware
is still unavailable during system development.

Commercial ight simulators are among the systems that would meet many of
these speci�cations. However, they are expensive, physically large, designed
for a very speci�c purpose, and they have to cut corners to be fast enough
(i.e., by not implementing reections, glare, shadows of moving objects, etc.).
Although ight simulators have actually been used with computer vision systems
(closed-loop experiments for automatic aircraft landing [6]), their sophisticated
mechanical design (i.e., hydraulics for emulating aircraft motion) is unnecessary
for most perception tasks.

3 The Immersive Perception Simulator (IPS)

The IPS is a new software environment intended to support a wide range of
simulation and evaluation tasks in computer vision. Its main purpose is to
provide a simple, exible, and cost-e�ective mechanism for testing and tuning
perception-based reactive systems in a su�ciently realistic environment. The
core of the IPS is based on public-domain software modules, which supports
the intention to make this system freely available to the vision and robotics
community. Flexibility is achieved by providing an abstract interface protocol
that simpli�es the communication with existing vision systems, e.g., KHOROS,
KBVision, and others.

3.1 IPS Architecture

The basic architecture of the IPS consists of three main components: (a) the
perception-based robot system, (b) the virtual environment, and (c) the IPS
interface (Figure 2). The vision and robot control system interacts with the
virtual environment simulator in a closed-loop fashion, where all communication
is handled by the IPS interface. The main ow of data consists of sensory data
generated by the simulator and action commands from the robot system. It
should be noted that the robot system can be implemented in software, hardware,
or as a combination of both. The necessary synchronization mechanisms are



Sensory
Data

Generator
Environment

Model

Robot Actions

Sensor Data

Auxiliary Data

(ground truth)

IPS InterfaceVirtual Environment Perception-Based Robot 
Control System

Sensor
Models

Simulation
Kernel

Perception
(Vision)
System

Robot
Motion
Control

Fig. 2. Immersive Perception Simulator (IPS) simpli�ed architecture. The percep-
tion-based robot system interacts with the virtual environment through the interface
layer in a closed-loop fashion, exchanging mainly sensory data, ground-truth data, and
action commands.

provided by the IPS interface, which is implemented on the UNIX process level.

3.2 The Virtual Environment

The main components of the virtual environment in Figure 2 are the environment
model, which is a description of the environment and the state of the robot at
any point in time that is maintained by what we call the simulation kernel. The
environment model is used, in conjunction with the appropriate sensor models, to
produce realistic images of the scene viewed by the robot's sensors. The structure
of the actual simulator resembles that of contemporary \virtual reality" (VR)
systems [9] and, in fact, we are borrowing several technological ingredients from
VR, such as the modeling of object dynamics and collision detection. However,
the main thrust of VR research today is on the implementation of sensors and
manipulators for man/machine interaction and high simulation speed, which are
not important in our case. On the other hand, the degree of physical realism
that we require is not nearly available from any existing VR system. Thus the
IPS could be considered an extremely realistic but \slow-motion" VR system.

3.3 Sensory Data Generation

While physical realism is the ultimate goal and requirement of the IPS, there is
always a tradeo� between the amount of modeled detail and available computing
resources. To make the simulator useful, rendering times must be kept within
a certain range. They should probably be shortest at the beginning of the



development cycle, when many alternatives still need to be evaluated, and can be
longer towards the end when the perception system is converging to its optimal
performance. Fortunately, the amount of detail and realism required at the
early stages will also be lower than towards the end, so that in general a tradeo�
should be feasible. The conclusion is that a single rendering approach cannot
cover the whole range of applications and the di�erent requirements encountered
during the system development process. The solution in IPS is to provide several
di�erent rendering modules that can can be invoked selectively but use a single
environment model.

Some of the available options for rendering visual scenes are listed in Table 1,
ranging from simple polygon shaders on the low (but fast) end up to sophisti-
cated (but slow) ray-tracing techniques. At the high end, i.e., for generating

Table 1. Comparison of image synthesis techniques.

Class Method Implem. Features Availability

1 polygon shading SW/HW at-shaded polygons

2 at shading with z-bu�er SW/HW depth values

3 Goraud shading with
z-bu�er

SW/HW smooth shading, simple
fog, point light sources

SGI entry
models

4 Phong shading with
z-bu�er

SW/HW highlights

5 texture mapping with
z-bu�er

SW/HW surface textures, simple
shadows

SGI high
end, ight
simulators

6 reection mapping with
z-bu�er

SW/HW reections SGI next
generation

7 ray-tracing SW refraction, real camera
model, area light
sources with penumbra,
realistic material
models

common
ray-tracers

8 ray-tracing + global
illumination simulation

SW indirect illumination Radiance

9 ray-tracing + global
illumination simulation +
\participating" media

(SW) realistic clouds,
scattering

current
research

the maximally realistic images, we are using an enhanced version of the Radi-
ance rendering system, which is described below. The choice of the lower-end
techniques depends upon the (vision) application and the available rendering
hardware. On state-of-the-art graphics workstations (e.g., HP, SGI, Sun), in-
terfaces to hardware-accelerated Goraud shading, Phong shading, and texture
mapping (classes 3 � 5) are going to be provided. On these platforms, limited
availability of ground-truth data is provided by reading the z-bu�er contents.



Also, hardware-accelerated techniques do generally not allow to implement non-
standard sensor models, but this may be tolerable at the early test stages.

3.4 The Radiance Rendering System

Radiance[14], a physics-based rendering system for producing photo-realistic im-
ages of complex scenes, is the main rendering tool in the IPS. Although initially
developed for applications in architecture and lighting design, Radiance is cur-
rently the most widely used non-commercial tool for general photo-realistic im-
age synthesis. Radiance considers both direct and indirect (global) light sources
and uses a combination of deterministic and stochastic ray-tracing techniques
to balance between speed and accuracy. It supports a wide variety of object
shapes, materials, and textures, and accepts many di�erent CAD input formats
for describing the scene. Parallel (distributed) processing and limited animation
are also supported.

The most important de�ciencies of Radiance for its application in the IPS
are related to the sensor model. Radiance uses a simple pinhole camera and
ideal shutter model and we are currently extending the package to consider the
following e�ects:
Lens distortion: Real lens systems, wide-angle lenses in particular, are not
entirely free from geometric distortions. As a consequence, straight lines in 3-
D do not generally map onto straight lines in the 2-D image. However, this
assumption is frequently made for vision algorithms that depend on calibrated
imagery, such as binocular stereo algorithms using epipolar planes or the Hough
transform for �nding straight lines and parametric curves.
Depth-of-�eld e�ects: In the pinhole camera model, every object in the
scene is in sharp focus. This is not the case with a real (thick) lens, where
images have a �nite \depth of �eld" that depends primarily on the focal length,
the aperture setting, the focus setting, and the distance of the object. This is
mainly important for close-range viewing, such as in robotic applications, but can
probably be ignored in many outdoor tasks. Practical solutions for simulating
the depth-of-�eld e�ect exist [11, 5].
Motion blur: Image motion (and thus motion blur) is induced by a moving
camera, a moving object, or a combination of both. Due to occlusion e�ects,
moving shadows, etc., motion blur is an extremely complex phenomenon and
its simulation time-consuming [12]. Distributed ray-tracing, as proposed in [5],
appears to be the only solution that allows arbitrary object shapes and motion
paths.
Enhanced outdoor environments: Since Radiance is not primarily aimed at
simulating outdoor scenes, we are enhancing the system to support the genera-
tion of fractal terrain models, plant shapes, and corresponding textures.

3.5 Ground-Truth Data

The acquisition of ground-truth data is usually expensive and tedious (e.g.,
through separate theodolite or radar measurements [7, 13]), therefore the pos-



sibility to access highly reliable ground-truth data is a key motive for using
simulation in many vision applications. Rendering systems like Radiance do not
have this access capability built-in, but most of the internal data structures are
already available and Radiance is currently being extended to provide this func-
tionality. The direct availability of such data on hardware-based renderers is of
course limited. Each application requires speci�c ground-truth data, including
local measures such as pointwise 3-D depth (z-value), local surface orientation,
local surface curvature, surface color, material type, and object identity. Se-
lective query mechanisms for these modalities are included in the IPS interface
protocol.

4 Selected Vision Problems

For many of mainstream vision problems, such as 3-D scene reconstruction,
shape-from-X techniques, sensor calibration, multi-sensor integration, motion
analysis, obstacle avoidance, autonomous navigation, terrain interpretation, etc.,
the huge amount of test data provided by an immersive simulation, with simul-
taneous access to ground-truth data, should allow to boost the accuracy and
robustness of many algorithms. While space does not permit to expand on these
issues here, the areas of active vision, adaptation and learning, and performance
evaluation deserve some additional thoughts:

Active Vision: The idea of active vision is to control the sensor(s) in a goal-
direction fashion, thus allowing, e.g., to focus on speci�c parts of the scene,
track moving objects, or to compensate for platform motion [1]. Since the re-
sulting systems are inherently closed-loop, testing is usually only possible when
the whole setup is complete and operational. Simulation allows to perform
meaningful experiments at a much earlier phase and without �nalizing the me-
chanical design. Typical hardware components for active vision are motorized
pan/tilt heads, motorized lenses, stereo vergence mechanisms, and gyroscopes,
all of which need to (and can) be properly modeled within the simulation system.

Adaptation and Learning: Although results have been disappointing in the past,
there are good reasons to believe that adaptation and learning can increase the
robustness and exibility of current vision techniques. There are many forms of
learning applicable for vision, including statistical parameter estimation, clus-
tering, function approximation, structural learning, self-organization, and neural
network training. Existing applications include low-level processing, feature se-
lection and grouping, model acquisition from examples, map learning, and 3-D
object recognition [4, 3]. The use of immersive simulation can provide several
important solutions with respect to the learning problem in vision:
a. Large sets of realistic examples can be created and processed with reasonable

e�ort.
b. Supervised learning is possible without human intervention, since ground-

truth data and actual model information are available from the simulator.



c. Closed-loop (or \exploratory") learning, where speci�c, critical training data
are generated in response to the learning progress, can be performed if
needed.

Of course, learning in this environment is not restricted to the vision system
alone but is equally important for all other aspects of agent control. As a result,
future vision and robot control system may have to spend just as many (and
probably more) hours \inside the simulator" as human pilots before they are
ready to perform their tasks reliably.

Performance Evaluation and Prediction: While measuring the performance of a
passive perception system is, at least, di�cult, evaluating a vision-based, closed-
loop control system is almost impossible before the complete system is actually
deployed. Pre-recorded test image sequences are appropriate for performance
comparison of passive vision systems but are insu�cient for testing reactive
systems. Instead, we can use simulation models to perform comparative testing.
In such a test suite, the system would not only be required to interpret given
images, but to solve a particular task within the (virtual) environment. E�ects
of variations in sensor performance, such noise, jitter vibration, dynamic range
limitations, etc., can be obtained without additional costs in the simulation
process.

The prediction of complete system performance under real conditions is of
equal importance, particularly for mission-critical applications. For real-time
system development, it is often necessary to evaluate di�erent hardware con�g-
urations, which are either physically available or only in the form of software
emulators. Speci�c system components may be gradually replaced by real-time
hardware components as during the development process. Tools that support
this kind of complex and heterogeneous engineering process are urgently needed
and emerging just now [10].

5 Summary

In the past, experiments on synthetic imagery have generally not been consid-
ered conclusive for a system's performance under real operating conditions. We
believe that state-of-the-art simulation and computer graphics can provide the
degree of detail and realism required to make synthetic experiments just as im-
portant as experiments on real data. The underlying assumption is that, if a
vision system does perform well on large sets of su�ciently realistic synthetic
imagery, there is a good chance it will show similar performance in reality. More
importantly, if the system fails even on synthetic data, there will be little hope
for reliable operation in practice.

The need for testing perception systems without su�cient test data or in
closed-loop applications has led to many ad hoc simulation setups that are lim-
ited to very speci�c tasks. A generic simulation environment, such as the IPS
described here, should reduce this expensive \reinventing-the-wheel" syndrome
and make comprehensive testing more practical. In addition to providing exten-
sive training sets for vision system validation, immersive simulation technology



facilitates the implementation and testing of complex reactive systems, for which
sensory data cannot be obtained o�-line. This is of particular importance for the
design of future perception-based systems, such as planetary rovers and similar
critical systems.
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