
© The Authors. Published by BCS
Learning and Development Ltd.
Proceedings of …

 1

WidgetLens: A System for
Adaptive Content Magnification of Widgets

B. Agarwal, W. Stuerzlinger
York University, Toronto, Canada

http://www.cse.yorku.ca/~wolfgang

On displays with high pixel densities or on mobile devices and due to limitations in current
graphical user interface toolkits, content can appear (too) small and be hard to interact with. We
present WidgetLens, a novel adaptive widget magnification system, which improves access to and
interaction with graphical user interfaces. It is designed for usage of unmodified applications on
screens with high pixel densities, remote desktop scenarios, and may also address some
situations with visual impairments. It includes a comprehensive set of adaptive magnification
lenses for standard widgets, each adjusted to the properties of that type of widget. These lenses
enable full interaction with content that appears too small. We also present several extensions.

Keywords: Magnification, semantic adaptation, windowing systems.

Fig. 1. Illustration of different approaches to magnify screen content and their effect on the readability of the rest of the user
interface. Top row: combo box, bottom: text canvas widget. From left to right: No magnification, circular lens magnification,

whole screen magnification, and adaptive content magnification via WidgetLens.

1 INTRODUCTION

Display resolutions are increasing faster than
display sizes in computing. This leads to an overall
increase in pixel density of screens, i.e. the number
of pixels per unit space. The best place to observe
this is smart phones and laptop screens. But even
desktop monitors are now experiencing this trend.
Higher density displays look more pleasing to the
eye, can display more detail and seem easier to
read. Also, computer users have often several
applications running simultaneously, often sharing
the whole area of the screen.

Pixel density is traditionally measured in pixels-per-
inch (ppi) [27]. Current smart phones and portable
book readers commonly feature screens between
150 and 400 ppi, laptops between 100 and 150 ppi,
netbooks up to 200 dpi, and tablets between 130
and 265 dpi. Most high-end desktop monitors
feature 100 ppi or more, with some, such as IBM’s

T221 display, up to 205 ppi. This increase in pixel
density causes three problems.

First, most traditional desktop graphical user
interfaces (GUIs), are designed for densities
between 72 and 100 ppi. On screens with higher
pixel densities, this makes all interactive user
interface elements, the widgets, and all content
appear smaller than intended. This issue is not only
visible on current high-end laptops, but also by
desktop users whenever they upgrade their
monitor. Another indication is that the release of a
220 ppi laptop, the “Retina” Macbook, was in
general very positively received. Yet, there widgets
appear too small in software that has not been
adapted to the high pixel density.

Second, remote access to desktop systems from
mobile devices suffers from the fact that desktop
GUIs are often designed for resolutions of
1280x1024 or higher. Yet, smart phones offer
either less resolution or have much higher pixel

WidgetLens: A System forAdaptive Content Magnification of Widgets
B. Agarwal ● W. Stuerzlinger

2

densities. The situation is similar on tablets, which
feature densities of 130 ppi or more. The current
Apple iPad has 2048×1536 resolution at 264 ppi.
Directly displaying a desktop remotely on such a
device will result in content much smaller than
intended, or force the user to use constant panning.
The ubiquitous pinch-and-zoom functionality on
mobile devices ameliorates the situation to some
degree, at the cost of slowing users down a bit.

Lastly, humans with some types of vision
impairment, such as color blindness and the
growing percentage of older persons, may also
benefit from mechanisms that magnify and adapt
screen content. The general population suffers
from similar issues in outside scenarios with bright
light or on devices with high-density screens.

Screen magnifiers are the most common solution to
the problem of content appearing too small. Most
operating systems provide them. Either a fixed
portion of the screen is zoomed inside a lens or the
whole screen is magnified and panned whenever
the cursor hits the edges of the screen. Yet, a fixed
size lens magnifies only a limited region of the
screen, which works only for widgets fitting within
that region. Panning has the downside that the user
may lose their overview of the screen. Long text
fields, large lists or tables, and canvas regions are
examples where neither of these two strategies
works well. Figure 1 illustrates these problems.

For canvas regions, one can address the problem
of content appearing too small with an appropriate
zoom factor – as long as the application provides
said zoom functionality. Yet, zooming is limited to
the main content area(s), and does not extend to
the widgets, toolbars, secondary dialogs, and other
GUI components. For all such standard widgets,
there is currently no solution, as all current major
GUI toolkits do not support seamless scaling of
widgets. In other words, there is no API support for
automatic resizing of GUI elements or different
pixel-density dependent rendering of GUIs. An
exception is the Apple iOS platform for
smartphones and tablets. iOS can scale content
through pixel doubling in both dimensions.
Alternatively, it also permits the programmer to
provide two versions, adapted to the two different
pixel densities. For all other platforms, it is difficult
for programmers to create GUIs that automatically
adapt to a given pixel density, especially for non-
integral size factors. Unfortunately, we see no
concerted effort to create GUI toolkits that support
seamlessly resizable widgets with no or only low
programming overhead.

Beyond the above-mentioned issues around small
content, a central issue is that interaction with GUIs
displayed on screens with higher pixels densities is
also difficult. First, users need to hit (very) small
targets. Several techniques have been proposed to
address this problem and we review them below.

Second and more importantly, the user needs to be
able to interact with the displayed content. This
includes recognizing the widget, clicking on
subparts of it, such as a “drop down” arrow or
scrollbars, cursor positioning, and text. On displays
with higher pixel densities than those used to
design the GUI all of these interactions demand
better motor control and vision relative to the norm.
Especially older adults find this challenging.

1.1 Previous Work

In this section we first survey techniques to
facilitate small target acquisition and then give an
overview of various techniques to adapt content.

Target acquisition has been improved through
modifying the presentation of targets or the cursor.
The first approach modifies the virtual size of a
target [46] and occasionally brings the target closer
(Drag-and-pop [4]). The latter replaces the point
cursor with a situationally ‘adapted’ cursor. This
includes shrinking and enlarging activation areas
[22, 31, 46], variable Control-Display (CD) gain
ratio cursors [1, 6, 25], as well as magnetic cursors,
Object Pointing [23], and Predictive Interaction [3].
These technique target near optimal pointing
performances and assist also people with visual
and motor impairments for pointing tasks.

Lens based methods magnify a part of the screen
content inside a non-interactive lens. Such lenses
are available in all windowing systems. The idea of
copying regions of a screen and showing them in a
new separate window, either as a control or an
overlay, is related. WinCuts [41] is a system that
copies arbitrary window regions and shows these
inside read-only “mini-windows”. Ramos et al. [37]
presented pressure-based pointing lenses that
magnify a 128x128 pixel window. Another
approach is exemplified by the Apple iPhone text-
editing lens and Shift technique [44], which uses a
‘callout’ to show a copy of the occluded screen
area. This lens pops up when the user performs a
touch and hold gesture. This delay-activated lens is
used only for cursor positioning. The Pointing
Magnifier [30], an extension of the area cursor [46],
is a visual motor magnifier. For widgets larger than
the magnification area or widgets that expand on
interaction, such as a menu, this strategy fails, as
the user is then not able to interact directly with the
part of the widget outside the lens. TapTap [38] is a
thumb-based interaction method to improve
accessibility at screen corners. It uses a double-tap
gesture, where the first tap shows a magnified lens
for the selected region. The second tap then
selects the target in that region and closes the lens.

A common issue with lens-based approaches is
that the lens itself occludes neighbouring content,
either completely or partially. This may lead to
(partial) loss of context. The Elastic Presentation
Framework [7] presented various distortion lenses.

WidgetLens: A System forAdaptive Content Magnification of Widgets
B. Agarwal ● W. Stuerzlinger

3

Other examples for focus-and-context techniques
are fisheye [24], Sigma [36], and high-precision
magnification [2] lenses. Rapid transition between
focus and context is important for the efficient use
of such lenses. Pietriga [36] noted that in general
small lenses do not occlude neighbors and thus
offer more screen real estate to the context.
Consequently, they are more efficient.

There has been substantial work on interface
adaptation [15, 17, 20, 21, 40]. These user initiated
customization methods improve user experience
and enable otherwise impossible tasks. Supple
reorganizes content hierarchies based on input
methods [20] and user abilities [21]. Similarly,
Prefab [15] addresses language difficulties by
providing translation. Bubbling Menus [43] is
targeted at expert users and uses directional hints
for activation. Findlater et al. [18, 19] stated that
adaptive menus have a very positive impact on
performance and satisfaction on small devices.
Findlater et al. [17] presented ephemeral
adaptation of a menu widget, and demonstrated
benefits in visually complex tasks. The
implementation of adaptive user interfaces on top
of existing, non modifiable, systems requires GUI
interpretation through accessibility APIs or pixel-
based GUI recognition. All major GUI toolkits
support accessibility APIs. Pixel-based methods,
such as Sikuli [47] and Prefab [15], work only on
the visible parts of a GUI. Hybrid approaches such
as PAX [9] and Deep Shot [8] combine pixel- and
accessibility API-based methods.

Toolglasses and MagicLenses [5] is a see-through
interface that modifies presentation of objects seen
through them. UI Façades [40] extends the Metisse
windowing system [11]. This system can adapt, re-
configure, and re-combine existing GUIs and even
replace widgets. Supple++ [21] presented ability-
based interface rendering, where the content is
varied based on the user’s abilities.

Finally, there are a few isolated examples of
adaptive widget magnification on current platforms.
The Apple iOS Safari browser magnifies HTML lists
with an enlarged selection widget, which takes over
a large part of the screen. However, this is limited
to one or two kinds of widgets and is not sufficient
to handle the whole GUI of an application. The only
other system that provides facilities to magnify
widgets for GUI applications is Scotty [16]. Yet, this
system uses the print functionality to achieve
magnification, which is very resource intensive.
Also and as presented, this system does not
automatically magnify widgets on demand.

2 THE WIDGETLENS SYSTEM

We present a new system, WidgetLens, designed
to enable easy interaction with GUIs displayed on
high pixel density screens. Simultaneously, it may

also improve accessibility for users with degraded
vision. We present the following contributions:

• A system that implements new, on-demand,
localized, widget-dependent, and automatic
zoom lenses, implemented without altering
the underlying applications or GUI toolkits

• Widget magnification techniques that
enable full interaction with magnified
content for all standard GUI widgets.

This novel solution also bridges the gap between
screens with increased pixel densities and the fact
that GUIs today are still mostly resolution
dependent. WidgetLens improves the “look” of
interfaces on high-pixel-density screens, and also
assists user interaction, i.e. improves the “feel”.

2.1 Design Decisions

We made the following main design decisions,
based on results from some previous work, cited
below, and our own exploratory studies:

• Location: A WidgetLens is shown directly
(centered) over the original widget. This
avoids obscuring other, potentially relevant,
content as much as possible.

• Size: If possible, the system overlays a
WidgetLens within the original widget area.
This is viable for some widgets, as margins
are often generous and horizontal scrolling
is also supported. For widgets where a
WidgetLens cannot fit within the original,
the magnification factor is used.

• Magnification Factor: Each WidgetLens
magnifies the content of the original widget
by a global, user configurable, zoom factor.
A factor of 2x is sufficient for most cases
except for displays with more than 200 ppi.

• Visual Appearance: To highlight the lens,
each WidgetLens is blended with a pastel
shade, by default a pale yellow. However,
users can change this colors setting to suit
individual needs (see Figure 3).

• Interface Interpretation: The WidgetLens
system relies on accessibility information
retrieved from the underlying GUI toolkit.
Alternatively, the system could be built on
pixel-reversal techniques [15, 8] or, better,
hybrid approaches [9]. While WidgetLens
provides high-resolution lenses for all
standard widgets, non-standard ones are
handled with texture scaling. Developers
can also supply a custom script instead.

• Activation: A central problem for lens-
based interaction techniques is that one
cannot know with certainty in what situation
the user wants to pop up or destroy the
lens. There are multiple options to activate
a lens. These include pressure and delayed

WidgetLens: A System forAdaptive Content Magnification of Widgets
B. Agarwal ● W. Stuerzlinger

4

activation, context-aware activation via
“hover” events or cursor speed, or modifier
key/button based activation. Similar to the
delay lens [37], WidgetLens pops up a lens
centered over the current widget when the
cursor is stationary for more than a half a
second. The appearance and dis-
appearance of a WidgetLens is animated.

• Layout Changes vs. Overlays: In simple
icon magnification systems, such as the
Mac OS X dock, other widgets move to
accommodate the overall increase in size.
In general, this is not possible for densely
tiled two-dimensional layouts, such as most
GUIs. While it might be theoretically
possible to use layout managers as a fix,
this approach suffers from several issues.
First, it is currently not possible to access
that layout manager from the outside.
Second, expanding a single widget will
negatively impact the overall layout and
may only be possible by growing the
window. Finally, some GUI windows do not
support resizing. The WidgetLens system
thus uses overlay windows instead.

• Interaction Adaptation: Depending on the
type of each given widget, the interaction
inside a WidgetLens is adapted to facilitate
interaction. E.g., for left handed users, the
scroll bar appears at the left side. Also,
scroll bars are displayed only if there are
too many entries in the magnified lens.

• Deactivation: WidgetLenses for all simple
widgets, such as icons, buttons, combo-
boxes, and single-selection lists, are
deactivated whenever any type of selection
event occurs. For other widgets that permit
complex interactions, such as a multi-line
text area, the user has to move the cursor
outside of the lens to destroy it.

One of the primary objectives of the WidgetLens
system is to show and enable users to interact with
magnified content. This offers a three advantages.
First and even on screens with high pixel densities,
users can still use screen space as usual with
multiple windows. Second, users can use this
method to remotely access desktop applications on
mobile devices with low-resolution screens. Third,
WidgetLens also may give a subset of those users
with moderately degraded vision better access to
GUIs and may enable them to interact fully with
standard GUI applications, without forcing them to
resort to traditional accessibility-based solutions.

2.2 WidgetLenses

The WidgetLens system uses three techniques to
improve user interaction: automatic widget
replacement, semantic adaptation, and on-demand
presentation. Each WidgetLens uses these.

Automatic Widget Replacement. UI Façades [40]
presented manual widget replacement before. The
WidgetLens system automatically adapts widgets
by presenting a widget’s content in an appropriately
magnified way. Interaction with the replacement
widget is mapped to corresponding events on the
original one.

Fig. 2. Top: WidgetLens holder with 4x magnified
widgets (in the back) and original application window.
Bottom: hovering over a menu widget shows its high-

resolution WidgetLens. For simplicit of illustration, only
the WidgetLens of the focussed widget is shown.

Semantic Adaptation. For each new window, all
its widgets are re-created and packed one-to-one in
a separate, hidden window, called WidgetLens
holder (Figure 2). For this, we walk the widget tree
recursively and add a semantically adapted version
of each widget based on its accessibility
information. Widgets are adapted both in size and
content. For example, text areas use larger font
sizes and resort to multiline text when the number
of characters exceeds the allotted space. For icons,
intelligent scaling or a higher resolution icon library
is used. Examples are shown throughout the paper.

On-Demand Presentation. At runtime, each
widget lens is presented in an overlay on demand
whenever the cursor hovers over the original
widget for more than a half a second (or
alternatively is activated through a “long” click).
This is another innovation relative to UI Façades.
See the bottom part of Figure 2 for an example of
the result of a hover action. While activated, all
mouse and keyboard events on the widget lens are
absorbed by the replacement and are passed to
the application through event redirection via
accessibility callbacks (or through coordinate
translation for texture-scaled widgets). For this, all
widget events on a replacement widget are
intercepted and communicated back to the original
application in an appropriate manner. This enables
normal user interaction with the content of each
WidgetLens, while still ensuring that the interaction
is reflected in the application itself.

WidgetLens: A System forAdaptive Content Magnification of Widgets
B. Agarwal ● W. Stuerzlinger

5

Fig. 3. High-resolution WidgetLenses for a spin button and a menu. Note the absence of pixilation artifacts and the larger
fonts. Left: WidgetLenses for the main widget (4x) and its neighbors (2x) appear if the cursor remains still (middle left). With

the first click or key event on the lens, all neighboring lenses disappear and appropriate callbacks are issued to the
application (bottom left). Right: Magnified menu cascade in the Gimp image editor (cut to conserve space).

3 USER INTERACTION AND ADAPTATIONS

When the cursor enters the area of a widget in the
normal application, the WidgetLens system
displays the corresponding adapted WidgetLens
from the WidgetLens holder. The WidgetLenses for
the immediate neighbors are displayed around the
focused widget in a lower layer, see Figure 3. The
user then interacts with the top WidgetLens as with
normal application widgets. The results of any
interaction results or changes to the content of the
WidgetLens are forwarded to the underlying
application to make the system appear seamless.

All the functionalities discussed in the following also
extend the widget replacement facilities of the
underlying UI Façades system further.

Fig. 4. Control panel for user preferences to express
situational needs.

3.1 User Specific Adaptations

A user can express his or her situational needs and
preferences for the current application session
within WidgetLens (Figure 4). One benefit of this is
that the user is not forced to make system wide
changes. Instead, only the applications running
under the control of the WidgetLens system are
affected. The adaptation options available cover
many of the vision and language related difficulties
that the general population may face during GUI
interaction. Each of these is discussed in turn.

Users can choose a global magnification factor for
widget and image scaling as well as a font. All the
lenses then use the specified font for their content.
Additionally, users can provide a higher resolution
replacement image library for widgets that contain
icons, such as buttons and menu-items. If no high-
resolution icons are available, the WidgetLens
system uses HQx [26], an image-scaling algorithm
targeted at pixel art, to create larger versions of
each icon. While not perfect, the results are
significantly better compared to the blurry results of
naïve image up-scaling or the blocky appearance
of pixel doubling, see Figure 5. This ensures that all
image content remains as readable as possible for
the chosen magnification factor. There are other
approaches for scaling pixel art, e.g., [32].

Fig. 5. Low-resolution icons (small, left column) scaled
using naïve texture-scaling (second column), image up-

scaling (third column) and HQx respectively (right).

WidgetLens implements several accessibility
features via color settings. The user can customize
WidgetLens to show high-contrast lenses based on
appropriate standards for low-vision users [29].
WidgetLens then invert all colors in the
WidgetLenses. This is designed to help users from
the general population in bright outside scenarios,
but may also help people with vision impairments.
Color-blind users, a common type of vision
impairment, can also select an appropriate
adaptation. This operation then enables
appropriate color choices and image filters. See
Figure 6 and Figure 7.

WidgetLens: A System forAdaptive Content Magnification of Widgets
B. Agarwal ● W. Stuerzlinger

6

Fig. 6. High Contrast WidgetLenses for different visual
deficiencies. Left: High contrast version of a menu, which
inverts the colors of all content. Right: Text areas in Hindi
and English. The bottom WidgetLens is further adapted

for left handed use.

Moreover, WidgetLens also supports left-handed
users by moving scroll bars and similar interactive
parts of widgets, such as the triangle for a combo-
box, to the left side. See Figure 6 for an example.

Fig. 7. Top: Illustration of high-resolution WidgetLens
adapted to French. All widget text and tooltips are

adapted in size and language. Bottom: Part of G-Edit
toolbar adapted to gray scale and to the Russian

language.

Similar to Prefab [15], the WidgetLens system
addresses language difficulties by optionally
providing widget content in a user preferred
language. For example, a user can specify ‘French’
as his preferred language and will then see all
WidgetLenses in that language (Figure 7). For this,
all widget text is translated to the specified
language using an online web service [28].

3.2 Widget Specific Adaptations

The size and shape of a WidgetLens is magnified
in proportion to the corresponding original
application widget. However, WidgetLenses
generated with this straightforward method are
sometimes too large for practical use and thus the
system needs to adapt them further. One common
example is text fields that already span most of the
screen width, such as the address field in a web
browser. Another example are composite widgets,
such as tables or trees, which may have free space
inside or around them that can be used to improve
visual presentation. The WidgetLens system deals
with such widgets in a series of steps. First, it

prioritizes the area taken up by a widget’s content,
such as text and images, over free space during
the widget duplication step. For this, the
dimensions of a WidgetLens are calculated as the
minimum of the size of the original widget and the
actual ones of the magnified content. This ensures
that a WidgetLens is appropriate for the content
and size of the current widget while minimizing
white space. E.g., if a list widget has space for ten
entries, but contains only five items, only those five
items are magnified. Second, if a WidgetLens is still
too large to fit onto the screen, we limit the number
of text lines, list or tree items, or the number of
characters that are displayed within a WidgetLens
to the available space (see Figure 8).

Fig. 8. Top: WidgetLenses for Text-areas and field may
fit inside the original widget boundary. Bottom-left:

Several combo-box WidgetLenses (2x and 3x), shown
for different simulated pixel densities.

4 IMPLEMENTATION

The WidgetLens system is built on top of Metisse
[11] and User Interface Façades [40]. Metisse
provides all basic window manager functionality,
such as event registry, event propagation, window
stacking and positioning. UI Façades is used to
show WidgetLenses and to enable user interaction

WidgetLens: A System forAdaptive Content Magnification of Widgets
B. Agarwal ● W. Stuerzlinger

7

with them. All content duplication, magnification,
interaction, and event adaptation functionality is
unique to the WidgetLens system, as are several
low-level extensions to Metisse and UI Façades,
such as WidgetLens focus management, overlay
lens activation and disappearance, texture scaling,
and some low-level event redirection. Figure 9
illustrates the high-level structure and event flow of
the WidgetLens system.

The extensions to Metisse (and UI Façades) are
implemented in C/C++. One noteworthy issue here
is that WidgetLens needs to work around the fact
that Metisse or UI Façades does not expose
individual façades to other parts of the system. All
high-level WidgetLens functionality, such as the
various types of WidgetLenses and their event
callbacks, is implemented as Python scripts on top
of UI Façades. Accessibility APIs are used to
communicate with the application’s widgets.
Alternatively, this could have been implemented
with similar technologies [8, 9, 16].

When the cursor enters the area of a widget in the
original application, the WidgetLens system
identifies and displays the corresponding magnified
WidgetLens from the WidgetLens holder. The
WidgetLenses for the immediate neighbours are
handled similarly and displayed around the focused
widget in a lower layer. The user then interacts with
the top lens as with normal application widgets.

WidgetLens provides magnification for all standard
widgets, such as buttons, toolbars, menus, text
fields & areas, combo-boxes, lists, and tables. The
only standard widget that is not handled in the
WidgetLens system is canvas areas. The main
reason for this is that most applications, such as
editors and browsers, already implement a zoom
facility for their canvas regions. Custom or non-

standard widgets, such as a color picker area, are
handled in WidgetLens through texture scaling by
default. Alternatively, a developer can also provide
a custom Python script to enable WidgetLens to
magnify their widget.

Simple selection events are directly forwarded to
the application and appropriate visual changes are
shown in the WidgetLens. This ensures that any
interaction with simple widgets, such as buttons,
icons, and menus, is immediately communicated to
the application. For WidgetLenses that are texture-
scaled, event coordinates are translated back to
the original widget. Interactions that directly affect
the content, such as character insertion, are also
communicated immediately to the application.
Interactions that do not affect the content directly,
such as dropping down a menu or scrolling a text
field, are handled within the WidgetLens. Upon
disappearance of a WidgetLens the final content of
the widget is again synchronized with the running
application to ensure consistency. This effectively
implements indirect interaction through the
magnified replacement widget seamlessly.

To illustrate some of the intricacies of this
indirection, consider interaction with a menu bar.
The first click on a top-level menu item is captured
and handled by the WidgetLens system to identify
the submenu. At this point, the high-resolution
version of both the selected menu-item and its
corresponding dropdown menu are visible. A click
on a submenu item then results in a menu selection
action and destroys the WidgetLens. However, if
this is another sub-menu, the second event also
gets absorbed by the WidgetLens and shows the
sub-sub-menu, and so on. See Figure 4. Combo-
boxes and other widgets that change appearance
upon the first interaction are handled similarly.

Fig. 9. Event and data flow for the WidgetLens system. Widget data is retrieved from the application via the accessibility
API. The system creates an enlaged version for each widget in the WidgetLens holder, invisible to the user. WidgetLens

shows parts of the WidgetLens holder with the help of UI Façades as an overlaid lens during run-time on demand. Events a
WidgetLens are passed back to the original application through the accessibility API. Note that both UI Façades and
Metisse had to be extended for WidgetLens. Metisse is the underlying window manager and not shown for simplicity.

WidgetLens: A System forAdaptive Content Magnification of Widgets
B. Agarwal ● W. Stuerzlinger

8

All user interactions with a text field or area widget,
such as insert, delete, highlight or erase events,
are handled by the WidgetLens system. For cut,
copy, and paste events, WidgetLens creates
appropriate callbacks to the application. Drag and
drop is also supported if the user first performs a
long mouse button press to activate a WidgetLens,
then dragging the (magnified) content, and finally
dropping it at the desired location.

To address interactions with potential side effects,
such as the user pressing a shortcut key for an
operation that also changes the state of another
widget, the WidgetLens system monitors for
changes in other widgets of the original application.
It updates the WidgetLens holder accordingly
whenever such a change occurs.

Replacement widgets are only generated upon
application initialization and whenever a new
window is created. Window resizing or opening and
closing a view inside a window is a noteworthy
exception here, as all resizable widgets may
change size then. To address this, the WidgetLens
system monitors the running application for widget
size changes in two ways: First, we check for a
resize event on the original application window.
Second and at regular intervals (by default a
second), the size of each widget is compared with
the last seen size. This handles cases where the
application resizes widgets without a change in the
window size. Regardless of the cause, that change
is then reflected in a corresponding size change for
the corresponding WidgetLenses.

5 DISCUSSION & FUTURE WORK

WidgetLens targets GUI accessibility on displays
with high pixel densities, mobile scenarios, and
may also address issues encountered by people
with some forms of visual impairments. While
widget magnification may seem like a transitional
technology, we point out that traditional GUIs will
always show up too small on mobile devices,
simply due to the substantial differences in screen
size. Moreover, WidgetLens is particularly suited
for mobile scenarios where the whole screen is
transmitted scaled down to the target resolution (to
reduce bandwidth consumption). In this situation,
WidgetLens would show the magnified widgets at a
larger size, more appropriate for interaction. Finally,
and If part of WidgetLens were implemented locally
on the tablet, it would then theoretically suffice to
send only the type and content of the currently
magnified widget, which requires little overhead.

In our experience and in an exploratory study with
students on a “Retina” MacBook, the system
achieves its design target and enables seamless
interaction with unenhanced applications, where all
widgets appear too small. We found only minor
implementation issues. However, we caution that

we have not yet formally evaluated WidgetLens
with outside users or with people with vision
impairments. We plan to do this in the future. In the
following, we discuss some options that we have
not yet explored, but may also tackle in the future.

5.1 Alternate Lens Activation and Deactivation

The “best” method for activation and deactivation of
a WidgetLens is an interesting topic. Our current
implementation uses delayed activation. This
context-based technique essentially leaves the job
of activating and deactivating a WidgetLens to the
system. The main benefit is that the user never
needs to perform an explicit action to request a
lens, which reduces activation overhead. With
delay-based activation the system uses the cursor
position and velocity to decides when to activate
and deactivate a WidgetLens. Thus, when the
cursor is immobile for more than half a second over
a widget the system shows a WidgetLens.

Another approach is to activate a WidgetLens
based on the user’s explicit request. A few options
here are context menus, function or modifier keys,
and various gestures. Although this approach gives
more control to the user, it also increases
interaction overhead through additional actions,
such as a context menu activation and selection.
Also, a context menu itself needs to be already a
high-resolution WidgetLens to provide adequate
accessibility. Modifier keys require a “free” key in
the windowing system. However, many systems
have already assigned all likely candidates. Also,
mouse gestures are not widely accepted, see e.g.,
the statistics on gesture usage in browsers.

Another approach is click-based activation. Here, a
click on the unmagnified widget shows the
WidgetLens, similar to the pointing magnifier [30].
For simple widgets this introduces extra interaction
overhead. Consider that a WidgetLens for a button
then effectively requires two clicks to achieve a
single action: one to activate the lens, the other to
click on the button, which also destroys the lens as
well. However, for some widgets, such as a combo-
box or menu, this first click can be re-used. Thus,
that first click can both activate a WidgetLens and
drop the list of options down. Hence, there is no
real overhead for this kind of widget.

5.2 Adding Motor Magnification

Visual enlargement of a target improves readability
but does not necessarily afford better user
interaction performance. Given that interaction with
un-scaled widgets is hard on screens with high
pixel densities, it may make sense to magnify the
motor space as well. Note that while an un-scaled
widget itself is often still large enough to hit on such
a screen, components of it, such as the little
up/down arrows in “spinner” widgets, may be too

WidgetLens: A System forAdaptive Content Magnification of Widgets
B. Agarwal ● W. Stuerzlinger

9

small to interact with. This is documented by the
complaints about traditional GUIs on high-pixel
density screens. Hence, we propose high-
resolution widgets that also offer motor
magnification to address this issue.

5.3 WidgetLens Integration into GUI Toolkits

The WidgetLens system is best integrated within
the windowing system or GUI toolkits, rather than
built on top of a modified window manager and UI
Façades. However, implementing WidgetLens
inside GUI toolkits requires substantial work.
Hence, we discuss here another, potentially more
viable, approach that integrates different modules
of the WidgetLens system at different levels. In this
approach, window management support for real-
time copying of screen regions and the associated
event redirection is implemented at the windowing
or operating system level. Scalable widget support
is implemented at the toolkit level, together with the
necessary interaction event hooks. The toolkit can
then witness user interaction events first-hand and
manage the real-time widget copies, based on
these events. A new API offered by the toolkit can
then be used for custom widgets and their
WidgetLenses. Defining appropriate APIs for this is
an interesting area for future work.

Finally and as our system is targeted at end users,
we do not expose internal options and parameters
to the user. For power users it might be appropriate
to expose more control, e.g., over the word wrap
option for magnified text.

5.4 Advanced White Space Management

Tables are handled on a single-cell basis with
column-based magnification. An advanced solution
would offer row-wise magnification as an
alternative. This could be handled as follows. If
there is free white space available within a column,
said space could be used to display the magnified
content. Otherwise, entries would be clipped to fit in
the available space and the full high-resolution
content only shown in a tooltip. This is similar to
how Microsoft Excel handles the problem.

6 CONCLUSION

We presented WidgetLens, a system that provides
adaptive widget magnification to improve access to
and interaction with magnified graphical user
interfaces. WidgetLens shows magnified versions
of all standard widgets on demand. Each of these
WidgetLenses provides full interaction with the
content, adjusted to the properties of the particular
type of widget. The system is targeted at usage on
displays with high pixel densities, where traditional
content can be too small for easy interaction, at
mobile scenarios where high-resolution content is

shown on small screens, and also at some
scenarios where vision impairments play a role.

In the future, we plan to extend WidgetLens into
some of the mentioned directions. With funding, we
will also evaluate WidgetLens in a formal user
study on screens with high pixel densities with
older adults to verify its effect on interaction
performance. At a global level, we see WidgetLens
as an inspiration to the field to think about better
ways to adapt traditional GUIs to today’s
technologies and use cases.

REFERENCES

1. Ahlström, D., Hitz, M. Leitner, G. An Evaluation
of Sticky and Force Enhanced Targets in Multi
Target Situations. NordiCHI 2006, 58-67

2. Appert, C., Chapuis, O., Pietriga, E. High-pre-
cision magnification lenses. CHI 2010, 273-282.

3. Asano, T., et al. Predictive interaction using the
delphian desktop. UIST 2005, 133–141.

4. Baudisch, P., et al. Drag-and-pop and drag-and-
pick: Techniques for accessing remote screen
content on touch- and pen-operated systems.
INTERACT 2003, 57-64.

5. Bier, E., et al. Toolglass and magic lenses: the
see-through interface. SIGGRAPH 1993, 73-80.

6. Blanch, R., et al., Semantic pointing: improving
target acquisition with control display ratio
adaptation. CHI 2004. 519–526.

7. Carpendale, M.S.T., Montagnese, C. A.
Framework for Unifying Presentation Space.
UIST 2001. 61-70.

8. Chang, T. and Li, Y. Deep Shot: A Framework
for Migrating Tasks Across Devices Using
Mobile Phone Cameras. CHI 2011, 2163-2172.

9. Chang, T., Yeh, T., and Miller, M. Associating
the Visual Representation of User Interfaces
with their Internal Structures and Metadata.
UIST 2011. 245-256.

10. Chapuis, O., Labrune, J., and Pietriga, E.
DynaSpot: Speed-dependent area cursor. CHI
2009, 1391-1400.

11. Chapuis, O. and Roussel, N. Metisse is not 3D
desktop! UIST 2005, 13–22.

12. Cockburn, A. and Brock, P. Human on-line
response to visual and motor target expansion.
GI 2006, 81-87.

13. Cockburn, A. and Firth, A. Improving the
acquisition of small targets. HCI 2003, 181–196.

14. Cockburn, A., Karlson, A. Bederson, B. A review
of overview+detail, zooming, and focus+context
interfaces. CSUR 2008, 41(1):1–31.

WidgetLens: A System forAdaptive Content Magnification of Widgets
B. Agarwal ● W. Stuerzlinger

10

15. Dixon, M. and Fogarty, J. Prefab: Implementing
Advanced Behaviors Using Pixel-Based
Reverse Engineering of Interface Structure. CHI
2010, 1525-1534.

16. Eagan, J., Beaudouin-Lafon, M., Mackay, W.
Cracking the cocoa nut: user interface
programming at runtime, UIST 2011, 225-234.

17. Findlater, L., et al. Enhanced Area Cursors:
Reducing fine pointing demands for people with
motor impairments. UIST 2010.

18. Findlater, L., McGrenere, J. A comparison of
static, adaptive, and adaptable menus. CHI
2004, 89-96.

19. Findlater, L. and McGrenere, J. Impact of
Screen Size on Performance, Awareness, and
User Satisfaction With Adaptive Graphical User
Interfaces. Proc. CHI 2008, 1247-1256.

20. Gajos, K. and Weld, D. S. SUPPLE:
automatically generating user interfaces. IUI
2004. 93-100.

21. Gajos, K., Weld, D. S. and Wobbrock, J. O.
Automatically generating personalized user
interfaces with Supple. Artificial Intelligence
2010, 910-950.

22. Grossman, T. and Balakrishnan, R. The Bubble
Cursor: enhancing target acquisition by dynamic
resizing of the cursor's activation area. CHI
2005, 281-290.

23. Guiard, Y., Blanch, R., and Beaudouin-Lafon,
M. Object pointing: a complement to bitmap
pointing in GUIs. Graphics Interface 2004. 9-16.

24. Gutwin, C. Improving focus targeting in
interactive fish- eye views. CHI 2002, 267–274.

25. Hourcade, J. P., et al. Pointassist for older
adults: analyzing sub-movement characteristics
to aid in pointing tasks. CHI 2010. 1115-1124.

26. http://en.wikipedia.org/wiki/Hqx

27. http://en.wikipedia.org/wiki/List_of_displays_by_
pixel_density

28. http://www.translator.google.com

29. http://www.cnib.ca

30. Jansen, A., Findlater, L., and Wobbrock, J.
O. From the lab to the world: Lessons from
extending a pointing technique for real-world
use. Extended Abstracts CHI 2011, 1867-1872.

31. Kabbash, P. & Buxton, W. The Prince”
technique: Fitts’ law and selection using area
cursors. CHI 1995, 273-279.

32. Kopf, J., and Lischinski, D. Depixelizing pixel
art. SIGGRAPH 2011, 99:1-99:8.

33. McGuffin, M. and Balakrishnan, R. Acquisition
of expanding targets. SIGCHI 2002, 57-64.

34. McGuffin, M. and Balakrishnan, R. Fitts’ law and
expanding targets: Experimental studies and
designs for user interfaces. CHI 2005, 388–422.

35. Peck, S., North, C., and Bowman, D. A multi-
scale interaction technique for large, high-
resolution displays. 3DUI 2009, 31-38.

36. Pietriga, E., and Appert, C. Sigma lenses:
focus-context transitions combining space, time
and translucence. CHI 2008, 1343-1352.

37. Ramos, G., et al. Pointing lenses: facilitating
stylus input through visual-and motor-space
magnification. CHI 2007. 757-766.

38. Roudaut, A., Huot, S., Lecolinet. E. TapTap and
MagStick: Improving one-handed target
acquisition on small touch-screens. AVI 2008.
146-153.

39. Ruiz, J. and Lank, E. Speed pointing in tiled
widgets: understanding the effects of target
expansion and misprediction. Intelligent User
Interfaces 2010, 229-238.

40. Stuerzlinger, W., Chapuis, O., Phillips, D. and
Roussel, N. User Interface Façades: Towards
Fully Adaptable User Interfaces. UIST 2006,
309-318.

41. Tan, D., S., Meyers, B., and Czerwinski, M.
WinCuts: manipulating arbitrary window regions
for more effective use of screen space. CHI
2004. 1525-1528.

42. Taras, C., et al. Improving screen magnification
using the HyperBraille multiview windowing
technique. ICCHP 2010, 506-512.

43. Tsandilas, T., Schraefel, M.C. Bubbling menus:
a selective mechanism for accessing hierar-
chical dropdown menus. CHI 2007. 1195–1204.

44. Vogel, D. and Baudisch, P. Shift: A Technique
for Operating Pen-Based Interfaces Using
Touch. CHI 2007.

45. Wobbrock, J., et al. The angle mouse: target-
agnostic dynamic gain adjustment based on
angular deviation. CHI 2009, 1401-1410.

46. Worden, A., et al. Making computers easier for
older adults to use: area cursors and sticky
icons. CHI 1997, 266-271.

47. Yeh, T., Chang, T. and Miller, R. Sikuli: Using
GUI Screenshots for Search and Automation.
UIST 2009, 183-192.1.

