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On displays with high pixel densities or on mobile devices and due to limitations in current 
graphical user interface toolkits, content can appear (too) small and be hard to interact with. We 
present WidgetLens, a novel adaptive widget magnification system, which improves access to and 
interaction with graphical user interfaces. It is designed for usage of unmodified applications on 
screens with high pixel densities, remote desktop scenarios, and may also address some 
situations with visual impairments. It includes a comprehensive set of adaptive magnification 
lenses for standard widgets, each adjusted to the properties of that type of widget. These lenses 
enable full interaction with content that appears too small. We also present several extensions. 
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Fig. 1. Illustration of different approaches to magnify screen content and their effect on the readability of the rest of the user 
interface. Top row: combo box, bottom: text canvas widget. From left to right: No magnification, circular lens magnification, 

whole screen magnification, and adaptive content magnification via WidgetLens.  

1 INTRODUCTION 

Display resolutions are increasing faster than 
display sizes in computing. This leads to an overall 
increase in pixel density of screens, i.e. the number 
of pixels per unit space. The best place to observe 
this is smart phones and laptop screens. But even 
desktop monitors are now experiencing this trend. 
Higher density displays look more pleasing to the 
eye, can display more detail and seem easier to 
read. Also, computer users have often several 
applications running simultaneously, often sharing 
the whole area of the screen. 

Pixel density is traditionally measured in pixels-per-
inch (ppi) [27]. Current smart phones and portable 
book readers commonly feature screens between 
150 and 400 ppi, laptops between 100 and 150 ppi, 
netbooks up to 200 dpi, and tablets between 130 
and 265 dpi. Most high-end desktop monitors 
feature 100 ppi or more, with some, such as IBM’s 

T221 display, up to 205 ppi. This increase in pixel 
density causes three problems. 

First, most traditional desktop graphical user 
interfaces (GUIs), are designed for densities 
between 72 and 100 ppi. On screens with higher 
pixel densities, this makes all interactive user 
interface elements, the widgets, and all content 
appear smaller than intended. This issue is not only 
visible on current high-end laptops, but also by 
desktop users whenever they upgrade their 
monitor. Another indication is that the release of a 
220 ppi laptop, the “Retina” Macbook, was in 
general very positively received. Yet, there widgets 
appear too small in software that has not been 
adapted to the high pixel density. 

Second, remote access to desktop systems from 
mobile devices suffers from the fact that desktop 
GUIs are often designed for resolutions of 
1280x1024 or higher. Yet, smart phones offer 
either less resolution or have much higher pixel 
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densities. The situation is similar on tablets, which 
feature densities of 130 ppi or more. The current 
Apple iPad has 2048×1536 resolution at 264 ppi. 
Directly displaying a desktop remotely on such a 
device will result in content much smaller than 
intended, or force the user to use constant panning. 
The ubiquitous pinch-and-zoom functionality on 
mobile devices ameliorates the situation to some 
degree, at the cost of slowing users down a bit. 

Lastly, humans with some types of vision 
impairment, such as color blindness and the 
growing percentage of older persons, may also 
benefit from mechanisms that magnify and adapt 
screen content. The general population suffers 
from similar issues in outside scenarios with bright 
light or on devices with high-density screens. 

Screen magnifiers are the most common solution to 
the problem of content appearing too small. Most 
operating systems provide them. Either a fixed 
portion of the screen is zoomed inside a lens or the 
whole screen is magnified and panned whenever 
the cursor hits the edges of the screen. Yet, a fixed 
size lens magnifies only a limited region of the 
screen, which works only for widgets fitting within 
that region. Panning has the downside that the user 
may lose their overview of the screen. Long text 
fields, large lists or tables, and canvas regions are 
examples where neither of these two strategies 
works well. Figure 1 illustrates these problems. 

For canvas regions, one can address the problem 
of content appearing too small with an appropriate 
zoom factor – as long as the application provides 
said zoom functionality. Yet, zooming is limited to 
the main content area(s), and does not extend to 
the widgets, toolbars, secondary dialogs, and other 
GUI components. For all such standard widgets, 
there is currently no solution, as all current major 
GUI toolkits do not support seamless scaling of 
widgets. In other words, there is no API support for 
automatic resizing of GUI elements or different 
pixel-density dependent rendering of GUIs. An 
exception is the Apple iOS platform for 
smartphones and tablets. iOS can scale content 
through pixel doubling in both dimensions. 
Alternatively, it also permits the programmer to 
provide two versions, adapted to the two different 
pixel densities. For all other platforms, it is difficult 
for programmers to create GUIs that automatically 
adapt to a given pixel density, especially for non-
integral size factors. Unfortunately, we see no 
concerted effort to create GUI toolkits that support 
seamlessly resizable widgets with no or only low 
programming overhead. 

Beyond the above-mentioned issues around small 
content, a central issue is that interaction with GUIs 
displayed on screens with higher pixels densities is 
also difficult. First, users need to hit (very) small 
targets. Several techniques have been proposed to 
address this problem and we review them below. 

Second and more importantly, the user needs to be 
able to interact with the displayed content. This 
includes recognizing the widget, clicking on 
subparts of it, such as a “drop down” arrow or 
scrollbars, cursor positioning, and text. On displays 
with higher pixel densities than those used to 
design the GUI all of these interactions demand 
better motor control and vision relative to the norm. 
Especially older adults find this challenging. 

1.1 Previous Work 

In this section we first survey techniques to 
facilitate small target acquisition and then give an 
overview of various techniques to adapt content. 

Target acquisition has been improved through 
modifying the presentation of targets or the cursor. 
The first approach modifies the virtual size of a 
target [46] and occasionally brings the target closer 
(Drag-and-pop [4]). The latter replaces the point 
cursor with a situationally ‘adapted’ cursor. This 
includes shrinking and enlarging activation areas 
[22, 31, 46], variable Control-Display (CD) gain 
ratio cursors [1, 6, 25], as well as magnetic cursors, 
Object Pointing [23], and Predictive Interaction [3]. 
These technique target near optimal pointing 
performances and assist also people with visual 
and motor impairments for pointing tasks. 

Lens based methods magnify a part of the screen 
content inside a non-interactive lens. Such lenses 
are available in all windowing systems. The idea of 
copying regions of a screen and showing them in a 
new separate window, either as a control or an 
overlay, is related. WinCuts [41] is a system that 
copies arbitrary window regions and shows these 
inside read-only “mini-windows”. Ramos et al. [37] 
presented pressure-based pointing lenses that 
magnify a 128x128 pixel window. Another 
approach is exemplified by the Apple iPhone text-
editing lens and Shift technique [44], which uses a 
‘callout’ to show a copy of the occluded screen 
area. This lens pops up when the user performs a 
touch and hold gesture. This delay-activated lens is 
used only for cursor positioning. The Pointing 
Magnifier [30], an extension of the area cursor [46], 
is a visual motor magnifier. For widgets larger than 
the magnification area or widgets that expand on 
interaction, such as a menu, this strategy fails, as 
the user is then not able to interact directly with the 
part of the widget outside the lens. TapTap [38] is a 
thumb-based interaction method to improve 
accessibility at screen corners. It uses a double-tap 
gesture, where the first tap shows a magnified lens 
for the selected region. The second tap then 
selects the target in that region and closes the lens.  

A common issue with lens-based approaches is 
that the lens itself occludes neighbouring content, 
either completely or partially. This may lead to 
(partial) loss of context. The Elastic Presentation 
Framework [7] presented various distortion lenses. 
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Other examples for focus-and-context techniques 
are fisheye [24], Sigma [36], and high-precision 
magnification [2] lenses. Rapid transition between 
focus and context is important for the efficient use 
of such lenses. Pietriga [36] noted that in general 
small lenses do not occlude neighbors and thus 
offer more screen real estate to the context. 
Consequently, they are more efficient. 

There has been substantial work on interface 
adaptation [15, 17, 20, 21, 40]. These user initiated 
customization methods improve user experience 
and enable otherwise impossible tasks. Supple 
reorganizes content hierarchies based on input 
methods [20] and user abilities [21]. Similarly, 
Prefab [15] addresses language difficulties by 
providing translation. Bubbling Menus [43] is 
targeted at expert users and uses directional hints 
for activation. Findlater et al. [18, 19] stated that 
adaptive menus have a very positive impact on 
performance and satisfaction on small devices. 
Findlater et al. [17] presented ephemeral 
adaptation of a menu widget, and demonstrated 
benefits in visually complex tasks. The 
implementation of adaptive user interfaces on top 
of existing, non modifiable, systems requires GUI 
interpretation through accessibility APIs or pixel-
based GUI recognition. All major GUI toolkits 
support accessibility APIs. Pixel-based methods, 
such as Sikuli [47] and Prefab [15], work only on 
the visible parts of a GUI. Hybrid approaches such 
as PAX [9] and Deep Shot [8] combine pixel- and 
accessibility API-based methods. 

Toolglasses and MagicLenses [5] is a see-through 
interface that modifies presentation of objects seen 
through them. UI Façades [40] extends the Metisse 
windowing system [11]. This system can adapt, re-
configure, and re-combine existing GUIs and even 
replace widgets. Supple++ [21] presented ability-
based interface rendering, where the content is 
varied based on the user’s abilities. 

Finally, there are a few isolated examples of 
adaptive widget magnification on current platforms. 
The Apple iOS Safari browser magnifies HTML lists 
with an enlarged selection widget, which takes over 
a large part of the screen. However, this is limited 
to one or two kinds of widgets and is not sufficient 
to handle the whole GUI of an application. The only 
other system that provides facilities to magnify 
widgets for GUI applications is Scotty [16]. Yet, this 
system uses the print functionality to achieve 
magnification, which is very resource intensive. 
Also and as presented, this system does not 
automatically magnify widgets on demand. 

2 THE WIDGETLENS SYSTEM 

We present a new system, WidgetLens, designed 
to enable easy interaction with GUIs displayed on 
high pixel density screens. Simultaneously, it may 

also improve accessibility for users with degraded 
vision. We present the following contributions: 

• A system that implements new, on-demand, 
localized, widget-dependent, and automatic 
zoom lenses, implemented without altering 
the underlying applications or GUI toolkits 

• Widget magnification techniques that 
enable full interaction with magnified 
content for all standard GUI widgets. 

This novel solution also bridges the gap between 
screens with increased pixel densities and the fact 
that GUIs today are still mostly resolution 
dependent. WidgetLens improves the “look” of 
interfaces on high-pixel-density screens, and also 
assists user interaction, i.e. improves the “feel”. 

2.1 Design Decisions 

We made the following main design decisions, 
based on results from some previous work, cited 
below, and our own exploratory studies: 

• Location: A WidgetLens is shown directly 
(centered) over the original widget. This 
avoids obscuring other, potentially relevant, 
content as much as possible.  

• Size: If possible, the system overlays a 
WidgetLens within the original widget area. 
This is viable for some widgets, as margins 
are often generous and horizontal scrolling 
is also supported. For widgets where a 
WidgetLens cannot fit within the original, 
the magnification factor is used. 

• Magnification Factor: Each WidgetLens 
magnifies the content of the original widget 
by a global, user configurable, zoom factor. 
A factor of 2x is sufficient for most cases 
except for displays with more than 200 ppi. 

• Visual Appearance: To highlight the lens, 
each WidgetLens is blended with a pastel 
shade, by default a pale yellow. However, 
users can change this colors setting to suit 
individual needs (see Figure 3). 

• Interface Interpretation: The WidgetLens 
system relies on accessibility information 
retrieved from the underlying GUI toolkit. 
Alternatively, the system could be built on 
pixel-reversal techniques [15, 8] or, better, 
hybrid approaches [9]. While WidgetLens 
provides high-resolution lenses for all 
standard widgets, non-standard ones are 
handled with texture scaling. Developers 
can also supply a custom script instead. 

• Activation: A central problem for lens-
based interaction techniques is that one 
cannot know with certainty in what situation 
the user wants to pop up or destroy the 
lens. There are multiple options to activate 
a lens. These include pressure and delayed 
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activation, context-aware activation via 
“hover” events or cursor speed, or modifier 
key/button based activation. Similar to the 
delay lens [37], WidgetLens pops up a lens 
centered over the current widget when the 
cursor is stationary for more than a half a 
second. The appearance and dis-
appearance of a WidgetLens is animated. 

• Layout Changes vs. Overlays: In simple 
icon magnification systems, such as the 
Mac OS X dock, other widgets move to 
accommodate the overall increase in size. 
In general, this is not possible for densely 
tiled two-dimensional layouts, such as most 
GUIs. While it might be theoretically 
possible to use layout managers as a fix, 
this approach suffers from several issues. 
First, it is currently not possible to access 
that layout manager from the outside. 
Second, expanding a single widget will 
negatively impact the overall layout and 
may only be possible by growing the 
window. Finally, some GUI windows do not 
support resizing. The WidgetLens system 
thus uses overlay windows instead. 

• Interaction Adaptation: Depending on the 
type of each given widget, the interaction 
inside a WidgetLens is adapted to facilitate 
interaction. E.g., for left handed users, the 
scroll bar appears at the left side. Also,  
scroll bars are displayed only if there are 
too many entries in the magnified lens. 

• Deactivation: WidgetLenses for all simple 
widgets, such as icons, buttons, combo-
boxes, and single-selection lists, are 
deactivated whenever any type of selection 
event occurs. For other widgets that permit 
complex interactions, such as a multi-line 
text area, the user has to move the cursor 
outside of the lens to destroy it. 

One of the primary objectives of the WidgetLens 
system is to show and enable users to interact with 
magnified content. This offers a three advantages. 
First and even on screens with high pixel densities, 
users can still use screen space as usual with 
multiple windows. Second, users can use this 
method to remotely access desktop applications on 
mobile devices with low-resolution screens. Third, 
WidgetLens also may give a subset of those users 
with moderately degraded vision better access to 
GUIs and may enable them to interact fully with 
standard GUI applications, without forcing them to 
resort to traditional accessibility-based solutions. 

2.2 WidgetLenses 

The WidgetLens system uses three techniques to 
improve user interaction: automatic widget 
replacement, semantic adaptation, and on-demand 
presentation. Each WidgetLens uses these. 

Automatic Widget Replacement. UI Façades [40] 
presented manual widget replacement before. The 
WidgetLens system automatically adapts widgets 
by presenting a widget’s content in an appropriately 
magnified way. Interaction with the replacement 
widget is mapped to corresponding events on the 
original one.  

 

Fig. 2. Top: WidgetLens holder with 4x magnified 
widgets (in the back) and original application window. 
Bottom: hovering over a menu widget shows its high-

resolution WidgetLens. For simplicit of illustration, only 
the WidgetLens of the focussed widget is shown. 

Semantic Adaptation. For each new window, all 
its widgets are re-created and packed one-to-one in 
a separate, hidden window, called WidgetLens 
holder (Figure 2). For this, we walk the widget tree 
recursively and add a semantically adapted version 
of each widget based on its accessibility 
information. Widgets are adapted both in size and 
content. For example, text areas use larger font 
sizes and resort to multiline text when the number 
of characters exceeds the allotted space. For icons, 
intelligent scaling or a higher resolution icon library 
is used. Examples are shown throughout the paper. 

On-Demand Presentation. At runtime, each 
widget lens is presented in an overlay on demand 
whenever the cursor hovers over the original 
widget for more than a half a second (or 
alternatively is activated through a “long” click). 
This is another innovation relative to UI Façades. 
See the bottom part of Figure 2 for an example of 
the result of a hover action. While activated, all 
mouse and keyboard events on the widget lens are 
absorbed by the replacement and are passed to 
the application through event redirection via 
accessibility callbacks (or through coordinate 
translation for texture-scaled widgets). For this, all 
widget events on a replacement widget are 
intercepted and communicated back to the original 
application in an appropriate manner. This enables 
normal user interaction with the content of each 
WidgetLens, while still ensuring that the interaction 
is reflected in the application itself. 
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Fig. 3. High-resolution WidgetLenses for a spin button and a menu. Note the absence of pixilation artifacts and the larger 
fonts. Left: WidgetLenses for the main widget (4x) and its neighbors (2x) appear if the cursor remains still (middle left). With 

the first click or key event on the lens, all neighboring lenses disappear and appropriate callbacks are issued to the 
application (bottom left). Right: Magnified menu cascade in the Gimp image editor (cut to conserve space). 

3 USER INTERACTION AND ADAPTATIONS 

When the cursor enters the area of a widget in the 
normal application, the WidgetLens system 
displays the corresponding adapted WidgetLens 
from the WidgetLens holder. The WidgetLenses for 
the immediate neighbors are displayed around the 
focused widget in a lower layer, see Figure 3. The 
user then interacts with the top WidgetLens as with 
normal application widgets. The results of any 
interaction results or changes to the content of the 
WidgetLens are forwarded to the underlying 
application to make the system appear seamless. 

All the functionalities discussed in the following also 
extend the widget replacement facilities of the 
underlying UI Façades system further. 

 

Fig. 4. Control panel for user preferences to express 
situational needs. 

3.1 User Specific Adaptations 

A user can express his or her situational needs and 
preferences for the current application session 
within WidgetLens (Figure 4). One benefit of this is 
that the user is not forced to make system wide 
changes. Instead, only the applications running 
under the control of the WidgetLens system are 
affected. The adaptation options available cover 
many of the vision and language related difficulties 
that the general population may face during GUI 
interaction. Each of these is discussed in turn.  

Users can choose a global magnification factor for 
widget and image scaling as well as a font. All the 
lenses then use the specified font for their content. 
Additionally, users can provide a higher resolution 
replacement image library for widgets that contain 
icons, such as buttons and menu-items. If no high-
resolution icons are available, the WidgetLens 
system uses HQx [26], an image-scaling algorithm 
targeted at pixel art, to create larger versions of 
each icon. While not perfect, the results are 
significantly better compared to the blurry results of 
naïve image up-scaling or the blocky appearance 
of pixel doubling, see Figure 5. This ensures that all 
image content remains as readable as possible for 
the chosen magnification factor. There are other 
approaches for scaling pixel art, e.g., [32]. 

 

Fig. 5. Low-resolution icons (small, left column) scaled 
using naïve texture-scaling (second column), image up-

scaling (third column) and HQx respectively (right). 

WidgetLens implements several accessibility 
features via color settings. The user can customize 
WidgetLens to show high-contrast lenses based on 
appropriate standards for low-vision users [29]. 
WidgetLens then invert all colors in the 
WidgetLenses. This is designed to help users from 
the general population in bright outside scenarios, 
but may also help people with vision impairments. 
Color-blind users, a common type of vision 
impairment, can also select an appropriate 
adaptation. This operation then enables 
appropriate color choices and image filters. See 
Figure 6 and Figure 7. 



WidgetLens: A System forAdaptive Content Magnification of Widgets 
B. Agarwal ●  W. Stuerzlinger  

 

6 
 

 

Fig. 6. High Contrast WidgetLenses for different visual 
deficiencies. Left: High contrast version of a menu, which 
inverts the colors of all content. Right: Text areas in Hindi 
and English. The bottom WidgetLens is further adapted 

for left handed use. 

Moreover, WidgetLens also supports left-handed 
users by moving scroll bars and similar interactive 
parts of widgets, such as the triangle for a combo-
box, to the left side. See Figure 6 for an example. 

 

Fig. 7. Top: Illustration of high-resolution WidgetLens 
adapted to French. All widget text and tooltips are 

adapted in size and language. Bottom: Part of G-Edit 
toolbar adapted to gray scale and to the Russian 

language. 

Similar to Prefab [15], the WidgetLens system 
addresses language difficulties by optionally 
providing widget content in a user preferred 
language. For example, a user can specify ‘French’ 
as his preferred language and will then see all 
WidgetLenses in that language (Figure 7). For this, 
all widget text is translated to the specified 
language using an online web service [28]. 

3.2 Widget Specific Adaptations 

The size and shape of a WidgetLens is magnified 
in proportion to the corresponding original 
application widget. However, WidgetLenses 
generated with this straightforward method are 
sometimes too large for practical use and thus the 
system needs to adapt them further. One common 
example is text fields that already span most of the 
screen width, such as the address field in a web 
browser. Another example are composite widgets, 
such as tables or trees, which may have free space 
inside or around them that can be used to improve 
visual presentation. The WidgetLens system deals 
with such widgets in a series of steps. First, it 

prioritizes the area taken up by a widget’s content, 
such as text and images, over free space during 
the widget duplication step. For this, the 
dimensions of a WidgetLens are calculated as the 
minimum of the size of the original widget and the 
actual ones of the magnified content. This ensures 
that a WidgetLens is appropriate for the content 
and size of the current widget while minimizing 
white space. E.g., if a list widget has space for ten 
entries, but contains only five items, only those five 
items are magnified. Second, if a WidgetLens is still 
too large to fit onto the screen, we limit the number 
of text lines, list or tree items, or the number of 
characters that are displayed within a WidgetLens 
to the available space (see Figure 8). 

    

 

 

Fig. 8. Top: WidgetLenses for Text-areas and field may 
fit inside the original widget boundary. Bottom-left: 

Several combo-box WidgetLenses (2x and 3x), shown 
for different simulated pixel densities. 

4 IMPLEMENTATION 

The WidgetLens system is built on top of Metisse 
[11] and User Interface Façades [40]. Metisse 
provides all basic window manager functionality, 
such as event registry, event propagation, window 
stacking and positioning. UI Façades is used to 
show WidgetLenses and to enable user interaction 
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with them. All content duplication, magnification, 
interaction, and event adaptation functionality is 
unique to the WidgetLens system, as are several 
low-level extensions to Metisse and UI Façades, 
such as WidgetLens focus management, overlay 
lens activation and disappearance, texture scaling, 
and some low-level event redirection. Figure 9 
illustrates the high-level structure and event flow of 
the WidgetLens system. 

The extensions to Metisse (and UI Façades) are 
implemented in C/C++. One noteworthy issue here 
is that WidgetLens needs to work around the fact 
that Metisse or UI Façades does not expose 
individual façades to other parts of the system. All 
high-level WidgetLens functionality, such as the 
various types of WidgetLenses and their event 
callbacks, is implemented as Python scripts on top 
of UI Façades. Accessibility APIs are used to 
communicate with the application’s widgets. 
Alternatively, this could have been implemented 
with similar technologies [8, 9, 16]. 

When the cursor enters the area of a widget in the 
original application, the WidgetLens system 
identifies and displays the corresponding magnified 
WidgetLens from the WidgetLens holder. The 
WidgetLenses for the immediate neighbours are 
handled similarly and displayed around the focused 
widget in a lower layer. The user then interacts with 
the top lens as with normal application widgets. 

WidgetLens provides magnification for all standard 
widgets, such as buttons, toolbars, menus, text 
fields & areas, combo-boxes, lists, and tables. The 
only standard widget that is not handled in the 
WidgetLens system is canvas areas. The main 
reason for this is that most applications, such as 
editors and browsers, already implement a zoom 
facility for their canvas regions. Custom or non-

standard widgets, such as a color picker area, are 
handled in WidgetLens through texture scaling by 
default. Alternatively, a developer can also provide 
a custom Python script to enable WidgetLens to 
magnify their widget.  

Simple selection events are directly forwarded to 
the application and appropriate visual changes are 
shown in the WidgetLens. This ensures that any 
interaction with simple widgets, such as buttons, 
icons, and menus, is immediately communicated to 
the application. For WidgetLenses that are texture-
scaled, event coordinates are translated back to 
the original widget. Interactions that directly affect 
the content, such as character insertion, are also 
communicated immediately to the application. 
Interactions that do not affect the content directly, 
such as dropping down a menu or scrolling a text 
field, are handled within the WidgetLens. Upon 
disappearance of a WidgetLens the final content of 
the widget is again synchronized with the running 
application to ensure consistency. This effectively 
implements indirect interaction through the 
magnified replacement widget seamlessly. 

To illustrate some of the intricacies of this 
indirection, consider interaction with a menu bar. 
The first click on a top-level menu item is captured 
and handled by the WidgetLens system to identify 
the submenu. At this point, the high-resolution 
version of both the selected menu-item and its 
corresponding dropdown menu are visible. A click 
on a submenu item then results in a menu selection 
action and destroys the WidgetLens. However, if 
this is another sub-menu, the second event also 
gets absorbed by the WidgetLens and shows the 
sub-sub-menu, and so on. See Figure 4. Combo-
boxes and other widgets that change appearance 
upon the first interaction are handled similarly.  

 

Fig. 9. Event and data flow for the WidgetLens system. Widget data is retrieved from the application via the accessibility 
API. The system creates an enlaged version for each widget in the WidgetLens holder, invisible to the user. WidgetLens 

shows parts of the WidgetLens holder with the help of UI Façades as an overlaid lens during run-time on demand. Events a 
WidgetLens are passed back to the original application through the accessibility API. Note that both UI Façades and 
Metisse had to be extended for WidgetLens. Metisse is the underlying window manager and not shown for simplicity. 
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All user interactions with a text field or area widget, 
such as insert, delete, highlight or erase events, 
are handled by the WidgetLens system. For cut, 
copy, and paste events, WidgetLens creates 
appropriate callbacks to the application. Drag and 
drop is also supported if the user first performs a 
long mouse button press to activate a WidgetLens, 
then dragging the (magnified) content, and finally 
dropping it at the desired location. 

To address interactions with potential side effects, 
such as the user pressing a shortcut key for an 
operation that also changes the state of another 
widget, the WidgetLens system monitors for 
changes in other widgets of the original application. 
It updates the WidgetLens holder accordingly 
whenever such a change occurs. 

Replacement widgets are only generated upon 
application initialization and whenever a new 
window is created. Window resizing or opening and 
closing a view inside a window is a noteworthy 
exception here, as all resizable widgets may 
change size then. To address this, the WidgetLens 
system monitors the running application for widget 
size changes in two ways: First, we check for a 
resize event on the original application window. 
Second and at regular intervals (by default a 
second), the size of each widget is compared with 
the last seen size. This handles cases where the 
application resizes widgets without a change in the 
window size. Regardless of the cause, that change 
is then reflected in a corresponding size change for 
the corresponding WidgetLenses.  

5 DISCUSSION & FUTURE WORK 

WidgetLens targets GUI accessibility on displays 
with high pixel densities, mobile scenarios, and 
may also address issues encountered by people 
with some forms of visual impairments. While 
widget magnification may seem like a transitional 
technology, we point out that traditional GUIs will 
always show up too small on mobile devices, 
simply due to the substantial differences in screen 
size. Moreover, WidgetLens is particularly suited 
for mobile scenarios where the whole screen is 
transmitted scaled down to the target resolution (to 
reduce bandwidth consumption). In this situation, 
WidgetLens would show the magnified widgets at a 
larger size, more appropriate for interaction. Finally, 
and If part of WidgetLens were implemented locally 
on the tablet, it would then theoretically suffice to 
send only the type and content of the currently 
magnified widget, which requires little overhead. 

In our experience and in an exploratory study with 
students on a “Retina” MacBook, the system 
achieves its design target and enables seamless 
interaction with unenhanced applications, where all 
widgets appear too small. We found only minor 
implementation issues. However, we caution that 

we have not yet formally evaluated WidgetLens 
with outside users or with people with vision 
impairments. We plan to do this in the future. In the 
following, we discuss some options that we have 
not yet explored, but may also tackle in the future. 

5.1 Alternate Lens Activation and Deactivation 

The “best” method for activation and deactivation of 
a WidgetLens is an interesting topic. Our current 
implementation uses delayed activation. This 
context-based technique essentially leaves the job 
of activating and deactivating a WidgetLens to the 
system. The main benefit is that the user never 
needs to perform an explicit action to request a 
lens, which reduces activation overhead. With 
delay-based activation the system uses the cursor 
position and velocity to decides when to activate 
and deactivate a WidgetLens. Thus, when the 
cursor is immobile for more than half a second over 
a widget the system shows a WidgetLens. 

Another approach is to activate a WidgetLens 
based on the user’s explicit request. A few options 
here are context menus, function or modifier keys, 
and various gestures. Although this approach gives 
more control to the user, it also increases 
interaction overhead through additional actions, 
such as a context menu activation and selection. 
Also, a context menu itself needs to be already a 
high-resolution WidgetLens to provide adequate 
accessibility. Modifier keys require a “free” key in 
the windowing system. However, many systems 
have already assigned all likely candidates. Also, 
mouse gestures are not widely accepted, see e.g., 
the statistics on gesture usage in browsers. 

Another approach is click-based activation. Here, a 
click on the unmagnified widget shows the 
WidgetLens, similar to the pointing magnifier [30]. 
For simple widgets this introduces extra interaction 
overhead. Consider that a WidgetLens for a button 
then effectively requires two clicks to achieve a 
single action: one to activate the lens, the other to 
click on the button, which also destroys the lens as 
well. However, for some widgets, such as a combo-
box or menu, this first click can be re-used. Thus, 
that first click can both activate a WidgetLens and 
drop the list of options down. Hence, there is no 
real overhead for this kind of widget. 

5.2 Adding Motor Magnification 

Visual enlargement of a target improves readability 
but does not necessarily afford better user 
interaction performance. Given that interaction with 
un-scaled widgets is hard on screens with high 
pixel densities, it may make sense to magnify the 
motor space as well. Note that while an un-scaled 
widget itself is often still large enough to hit on such 
a screen, components of it, such as the little 
up/down arrows in “spinner” widgets, may be too 
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small to interact with. This is documented by the 
complaints about traditional GUIs on high-pixel 
density screens. Hence, we propose high-
resolution widgets that also offer motor 
magnification to address this issue. 

5.3 WidgetLens Integration into GUI Toolkits 

The WidgetLens system is best integrated within 
the windowing system or GUI toolkits, rather than 
built on top of a modified window manager and UI 
Façades. However, implementing WidgetLens 
inside GUI toolkits requires substantial work. 
Hence, we discuss here another, potentially more 
viable, approach that integrates different modules 
of the WidgetLens system at different levels. In this 
approach, window management support for real-
time copying of screen regions and the associated 
event redirection is implemented at the windowing 
or operating system level. Scalable widget support 
is implemented at the toolkit level, together with the 
necessary interaction event hooks. The toolkit can 
then witness user interaction events first-hand and 
manage the real-time widget copies, based on 
these events. A new API offered by the toolkit can 
then be used for custom widgets and their 
WidgetLenses. Defining appropriate APIs for this is 
an interesting area for future work. 

Finally and as our system is targeted at end users, 
we do not expose internal options and parameters 
to the user. For power users it might be appropriate 
to expose more control, e.g., over the word wrap 
option for magnified text. 

5.4 Advanced White Space Management 

Tables are handled on a single-cell basis with 
column-based magnification. An advanced solution 
would offer row-wise magnification as an 
alternative. This could be handled as follows. If 
there is free white space available within a column, 
said space could be used to display the magnified 
content. Otherwise, entries would be clipped to fit in 
the available space and the full high-resolution 
content only shown in a tooltip. This is similar to 
how Microsoft Excel handles the problem. 

6 CONCLUSION 

We presented WidgetLens, a system that provides 
adaptive widget magnification to improve access to 
and interaction with magnified graphical user 
interfaces. WidgetLens shows magnified versions 
of all standard widgets on demand. Each of these 
WidgetLenses provides full interaction with the 
content, adjusted to the properties of the particular 
type of widget. The system is targeted at usage on 
displays with high pixel densities, where traditional 
content can be too small for easy interaction, at 
mobile scenarios where high-resolution content is 

shown on small screens, and also at some 
scenarios where vision impairments play a role. 

In the future, we plan to extend WidgetLens into 
some of the mentioned directions. With funding, we 
will also evaluate WidgetLens in a formal user 
study on screens with high pixel densities with 
older adults to verify its effect on interaction 
performance. At a global level, we see WidgetLens 
as an inspiration to the field to think about better 
ways to adapt traditional GUIs to today’s 
technologies and use cases. 
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