

Collaborative 3D Content Creation

Wolfgang Stuerzlinger ISRG (Interactive Systems Research Group) York University, Toronto, Canada

Overview

- Introduction
 CoViD
- Conceptual 3D design
 MIVE, Virtual Lego, and SESAME
- Collaborative work
 - MULTI, Multi-User Laser Pointers
- List of other research projects

Collaborative Virtual Design - Vision

A group of people

- with different backgrounds
- from different disciplines
- with different computer skills

aided in their collaboration by a computer-based system

My research: Collaborative Virtual Design (CoViD)

- Collaborative work on 3D digital content
 - Needed in many application domains

3D Content

3D digital models today basis for many industries Everything that requires:

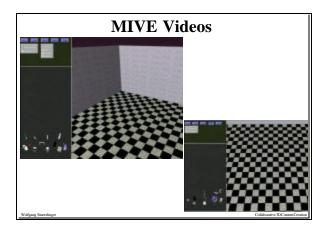
• Industrial/mechanical design, simulations, training environments, animation, entertainment

Today, 3D design via (very) complicated software

- Only specialists can learn these tools
- Focus on later stages of design "detailing"
- Not adequate for early stages "conceptual" • Here is where collaboration happens!

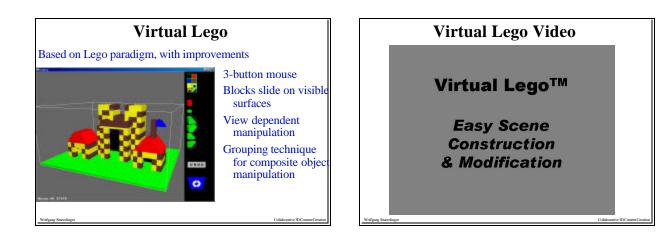
Requirements Analysis for Conceptual Design

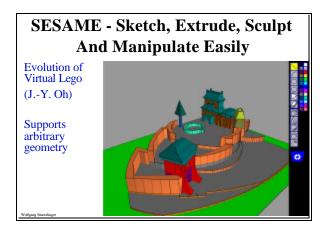

(J.-Y. Oh)


Conceptual design session for 3D requires

- Quick visualization of virtual 3D objects
- Simple manipulation
 - Preferably with 2D devices
 - 6DOF/3DOF devices problematic
- Rapid exploration of several *different* ideas
- Support for incremental and *structural* changes

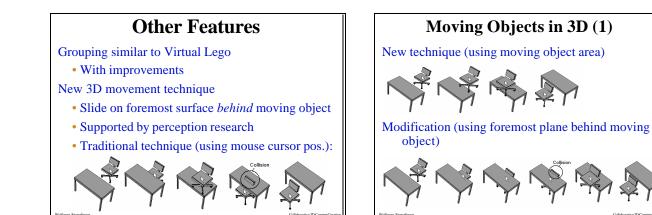
MIVE - Multi-User Intuitive Virtual Environment




Revised Goals

Users of MIVE wanted modification of objects, too

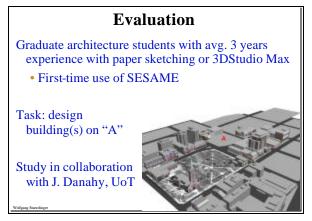
First idea: Emulate good properties of LegoTM


- Easy to use
- Quick creation of approximate 3D models
- Sliding & snapping of solid blocks
- Easy re-arrangement of *arbitrary* parts
- Fun to play with!
- Lego used to prototype for VR (Neale 2002)

SESAME Video

SESAME (Sketch, Extrude, Sculpt, and Manipulate Easily) A 3D Conceptual Design System

Moving Objects in 3D (2)

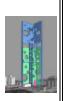

Speed computations with graphics hardware

- 1) Render scene without moving object & save
- 2) Render backfaces of moving object
- 3) Location of min. depth difference used to compute new 3D position
- 4) Re-render object at new location. If collision, use min. depth diff. to shift object to front

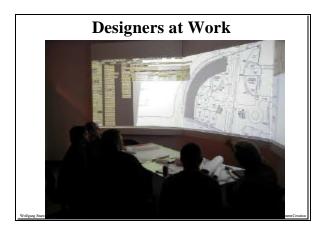
Modified technique ignores objects closer to viewer relative to moving object

SESAME 3D Movement Video

Moving Objects in 3D Using a Mouse


Comparison Results

3DS Max vs. SESAME


- Significantly faster
- Significantly more creative

Paper sketching vs. SESAME

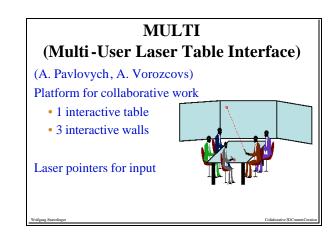
- No significant differences
- SESAME provides better understanding of space
- Sketching provides better understanding of function of building

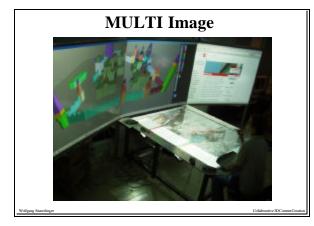
Obstacles for Collaborative Design

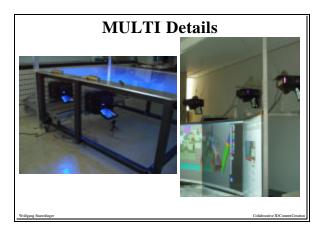
- Most applications require significant training • "Solved" with MIVE, Virtual Lego, & SESAME
- Input devices are single-user
 Hard to have more than one pointing device
- Graphical user interface & OS is single-user • Designed for one "communication channel"
- Output devices are single-user • Monitor too small for effective collaboration

Single/Shared Display Groupware

Systems designed to enhance collaboration


• Via one (or more) large interactive display(s) • Wall, tabletop, etc.

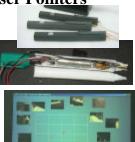

Interaction usually only directly on screen


• Limits everything to single "driver"

How to support multiple input/output streams?

• Laptop/PDA for each user doesn't work

Multi-User Laser Pointers


Computer controlled laser pointers as input devices Wired or wireless

Both remote and local pointing - i.e. as stylus on back-projected display!

Laser identification useful

• Undo, playback, etc.

• Groupware

• Grey code

Laser spots observed by cameras behind screens Camera Laser blinking synchronized Display 囗 with acquisition rate of camera Identification schemes Projector • Single laser per cycle N • Uneven brightness • Single laser per cycle + turn all lasers on outside of camera shutter time Better brightness

How to Identify Lasers

"Laser saver" (similar to screen saver)

Future Work on **Collaborative Virtual Design (CoViD)**

Extensions to SESAME

• Currently analyzing requirements Finish building MULTI

- Optimize system
- Add tangible user interface

Port MIVE, Virtual Lego & SESAME to MULTI Verify that MULTI really works

• Evaluation with groups

Some Other Research Projects

- Virtual Reality systems: IVY (= 6sided CAVE) • Tracking with Hedgehog (A. Vorozcovs)
- High-Dynamic Range display/projection systems
- Behavioral training with mobile devices
- Text entry
 - LessTap, Text entry for novices, Whiteboards (A. Pavlovych)
- Pointing

• Steering law, etc. (S. Kulikov, S. MacKenzie)

Thanks

- My students (see ISRG pages)
- My collaborators (UoT, UBC, Seneca, York, ...)
- Funding by NSERC, IRIS, CREStech, CFI, ...

For more information:

www.cs.yorku.ca/~isrg www.cs.yorku.ca/~wolfgang **Questions?**