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Outline

• Analysis & extrapolation of a few trends
– Web 2.0: the new Desktop?

– Collaborative computing in Web 2.0

– Offline applications & storage in Web 2.0

• Implications & predictions
– Changes to development process

– A few observations & predictions

Why is Web 2.0 successful?

• Web 2.0 offers services
– Not applications

• Any time, any platform, any location

• Users are in control
– Control access to their data

– Choose their services, add to them, collaborate via them,…

• Harness collective intelligence
– E.g. transition from Taxonomy ⇒ “Folksonomy” & Tagging

• Offers real advantages to many people

Web 2.0: The New Desktop?

Web 2.0: The New Desktop?

• Most traditional applications available in Web 2.0
– Gmail, Google Calendar

– Google Docs

– …

• Seems to obviate need for traditional “desktop”

• Web Operating System
– Operating system under browser still necessary

• But a blurry boundary (iPhone)

Example: Desktoptwo
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Web Desktop with Files

• Clone Desktop Idea
– Advantage: familiarity

– Disadvantages
• UI performance hit

• Speed performance hit
• Files - again?
• Not really “Web 2.0”

– Web 2.0 is about services

– Also no collaboration support - desktop is inherently single user

Web 2.0 Equivalent: Service Aggregation

• Different mential model
– Clean break better (less confusion)

• Example: iGoogle
– Configurable by user, everybody’s needs are different!

Another way: Desktop Widgets

• Integration of Web into desktop
– OS X Dashboard, …

• Finally: Web 2.0 not for everything
– Most 3D games, high-performance computing, big

simulation, visualization, etc.

Collaborative Computing in Web 2.0

Collaborative Systems - CSCW / Groupware

• Collaboration
– Group of people with common goal

– Goal large enough so that it can’t be tackled individually

• Computer Supported Collaborative Work (CSCW)

• Lot’s of collaborative services on Web 2.0
– Email, encyclopedia, scheduling, office applications, …

– CVS, bug tracking, feature requests, …

– Internal company information systems, …

CSCW/Groupware Development

• Different from software for individuals
– Developers can never know all potential users & their jobs

• Many different target users
• Managers are biased, too

• Critical mass issue

• CSCW apps must support
– Information sharing (easy on Web)

– Awareness (hard on Web)

– Coordination (hard on Web)
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Four CSCW/Groupware Design Principles

• Maximize Personal Acceptance
– Visible benefits, no training, …

• Minimize Requirements
– Any time, location, platform, unobtrusive collaboration, …

• Minimize Constraints
– Support roles, allow exceptions, …

• External Integration
– Data exchange, …

Based on [Cockburn94, Grudin94]

Maximize Personal Acceptance (1)

• Address disparity in work and benefit
– CSCW often more work for those who don’t benefit

– Example: group calendars
• Manager able to control your time

– ⇒ People don’t use it (rejection)

– Or people block days at a time (subversion)

– Reduce burden to non-beneficiaries
• Easy-to-use, efficient to use

– Generate personal (!) benefits
• E.g. private use of Blackberry

• Facilitate adoption
– Example: hospital, only 1 of 5 nurses uses SW ⇒ disaster

– Low entrance threshold
• Easy-to-learn design

• If training required, make it painless
– On site, multiple times, user’s schedule

– Alternative: Screen videos/tutorials
• Need to be done well, too

Maximize Personal Acceptance (2) Minimize Requirements & Overhead

• Any time, any location, any platform, …
– Web 2.0 good at that (except not offline)

• Unobtrusive  CSCW features
– Information sharing and editing

• Mostly reading, but encourage contribution

– Awareness
• What are others currently doing?

– Coordination
• Identification of ownership, changes, etc.

• Features must be present but never predominant!

Information Sharing & Editing

• Example: Wikis

Awareness (Coordination of the Present)

• Well known in Chat
– “Jill is typing …”

• Helps avoid conflicts

• But can be much more
– Jack is currently adding calendar entry on Oct 24

– John is currently editing part X of project Y

– Jim started editing “Future plans” on current page at 3pm
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Coordination of the Past

• Who did what, when?
– Not just retrieval, but also comparisons, etc.

Coordination of the Future

• Who is planning what?
– Example: Wiki discussions, roadmaps, …

Minimize Constraints

• Support roles and exceptions
– Organizations have both formal & informal work patterns

• CSCW applications tend to flatten hierarchies
– May disadvantage some users & threaten their “domains”

• Exception handling
– “This needs to be authorised by Ms. S but she is away for

3 weeks”  … “I’ll see if I can get Mr. J to sign for her”

– Humans good at exception handling & improvisation

– Flexibility is key here!

External Integration

• Permit other tools
– Bi-directional data exchange with other systems

• Another way to ease adoption
• Helps with emergency back-out

– If your system is fulfills user’s needs well, this will never happen

– Reassurance factor

• Web 2.0 services must allow users to retrieve all their data
– Otherwise: lot’s of workarounds

More Reflections on Collaboration in Web 2.0

• One of the key features of Web 2.0
– Increasingly more collaborative features

• In the future more: reviewing, commenting, …

• What works
– Leave individual user in control

• Flexibility is key
• Otherwise abandonment or lot’s of workarounds

– Do one service well
• Don’t try to do everything at once

– Support user fully in their tasks

Offline Web 2.0 Applications
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Offline Web Applications

• Main deficiency of Web 2.0
– No support for offline work

• I.e. when no network connectivity
– Algonquin park
– Subway
– Foreign country
– No network
– Insecure environment
– …

• Offline apps already available today
– E.g. OS X dashboard “widgets” are Javascript!

• Problem: no persistency

Source of Inspiration

• Mobile Computing Platform
– PDA’s & Smartphones

• Palm/Treo, WM6, Blackberry, iPhone, etc.

– Addition of wireless networks serious “boost”
• “Crackberry” addiction
• Some people use mobile computing more than desktop!

– Best user interfaces: iPhone, Palm

How to Enable Offline Work

• Keep local copy of data
– Usually only “touched” data

• Cache

– Better a bit more (see later)

• If network
– (Upload local updates)
– Use network directly

• Cache requests

• If no network
– Use local copy
– Store updates

Synchronization

• Local copy
– User edits data when offline

– Changes to be uploaded on re-connect

– Also download recent changes by others

• Conflict resolution
– Easy if only one side updated since “time of last sync”

• Newest change wins
• Better ideas … (later)

• Maps well to Web 2.0 - AJAX!

User Interface for Synchronization (1)

• User's view syncing as a bug, not a feature.

• Need basic UI that sync is occurring
– Diagnosis when network is acting up or sync is failing

• Sync should happen automatically
– On first load, network (re-)connect, periodically (autosave)

– Users rarely can predict when they will be offline
• Local copy of “essential”, “owned”, and “touched” data

User Interface for Synchronization (2)

• Users don’t understand diff/merge interfaces
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User Interface for Synchronization (3)

• System needs to make reasonable sync decisions
– Ideally fine-grained

• E.g. A changes title of contact, B changes the address ⇒ OK!

– For longer documents
• Annotate each change

– E.g. “Track Changes” in Word

– In conflicts, last change survives
• However, overwritten version must be stored in history

– Note: history anyways necessary for collaboration!

Problems with Synchronization

• Issues to think about
– Network delays (async!)

– Many changes (async!)

– Partial syncs due to network drop, crashes (both sides)

– New changes can occur during a sync

• User should never loose data
– System never in unusable or inconsistent state

Offline Technologies: “Hacks”

• Store data in Cookies
– Well-known problems

• Store data via Adobe Flash (shared object), ActiveX
(COM), XPCOM (Firefox), …
– Limited amounts, not platform/browser independent

• Form data storage
– Limited amounts

• Internet Explorer DHTML feature
– Limited to 60k

• Store application/data as URL’s
– Fairly good, up to limit of browser URL cache

Offline Technologies: Google Gears

• Three main parts
– Local Server

• Stores all Web requests, if offline delivers cached copy

– Database
• SQL lite (variant)

– Worker Pool
• for long(er)-running tasks

– Also: Sync Engine
• Worker for synchronization

• Available for PC, Mac, Linux
– Currently not yet on Palm, iPhone, WM6, …

Offline Technologies: Others

• Dojo Offline Toolkit
– Part of Dojo AJAX framework
– Support for offline storage

• DojoSQL and DojoStorage (key-value pairs)
• Encryption for stored data

– Support for synchronization

• HTML 5 (draft standard)
– Offline storage of key-value pairs as well as SQLite
– Will be available in Firefox 3, …

• Most probably also in IE

– No support for synchronization, yet

Changes on SW Development in Web 2.0
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Effects on Development

• Shift from applications to services
– More users ⇒ more beginners

• Hence, usability #1 priority, not more features
– Design for user’s needs
– Do not maximize functionality, minimize it

• More features make everything harder to find
• User has no time for tutorials, documentation,…

– “Ballons” may work well

• Alternatively, 3 different levels of service
– Beginner, intermediate (most users), expert (a few)

– Back button = undo for everything
• Store changes even across sessions

– Good visual design, avoid web terminology, KISS, …
• Allow bookmarking of screens

Safety / Security / Availablility

• Services should be always available
– Google already “world-wide critical infrastructure” :-)

– 99.999+% availability
• Offline support helps here

– Ideally no crashes (server & client)

• Encrypt data
– Transmission

– Local cache

– Never share user’s data without explicit permission

Technical Web 2.0 Trap

• Update everybody’s “program” at almost any time
– Advantage & disadvantage

• Fix everybody’s service immediately
• Break everybody’s service immediately

– Hard for user to revert in this case, as no local copy (!)

» Disaster

• Another problem: caches not always updated immediately
– Can be months: 4 week vacation, 2 week conference, 2 week sick

• Necessitates good version management
– Must always allow upgrade “old” data versions

• With no user effort (or at the worst minimal effort)

Web 2.0: Opportunity

• Get immediate feedback from actual use
– Continuous feedback

– Fast identification of problems
• Is a feature actually used?

– Monitor successes

• When & where do users abort / fail?
– Monitor partial “transactions”

– Fast adaptation possible

• Key aspect of Web 2.0 business model

Future Web 2.0 Toolkits

• Collaboration support
• Offline & sync support
• Encapsulate Web 2.0 UI “look & feel”
• Current examples

– Dojo
– Google Web Toolkit + Google Gears

• Future
– Web 2.0 UI toolkits
– Web 2.0 CSCW toolkits
– Web 2.0 Offline & sync toolkits

Effects on Development Teams

• Web 2.0 necessitates “back-end” & “front-end”
– Front-end: Focus on users & their tasks

• Mix of IT, UI, CSCW designers
• Typically more code here than at backend

– Back-end supports front-end
• Must not dictate front-end development
• Focus on system stability, data security, performance
• Often shared among different projects

– Both need to collaborate to succeed
• Special needs back-end code similar to “middleware”
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Web 2.0 SW Development Model Change

• AJAX fundamentally changes code
– In particular: “Asynchronous”

• Hence, back-end cannot control UI Closing Thoughts

My Advice for Web 2.0

• #1: Test your user interface
– Even more important than on desktop

• #2: Get the basics right (standard Web UI guidelines)
– Simple design, consistent UI, clear navigation, good feedback, error

resistant, as simple as possible, CSCW, offline & sync, …

• #3: Communicate clearly
– Users want to spend minimum time

• Quickly & easily convince them that your site is worthwhile

• #4: Provide what users need
– Match their expectations & needs

• Research requirements most carefully

Technological Advice for Web 2.0

• Technical advice
– None (on purpose)

• Technology is just a means, not an end!

– Support collaboration

– Support off-line storage & synchronization
• Both will become common in Web 2.0

• Remember: the “invisible” computer wins
– See your parents car, cell-phone, etc.

– Our job to make Web 2.0 as invisible as possible
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