Object Speed Control Based on Signed Distance Field for Mid-Air Object Manipulation in Virtual Reality

Object Speed Control Based on Signed Distance Field for Mid-Air Object Manipulation in Virtual Reality Inproceedings

Mucahit Gemici, Wolfgang Stuerzlinger, Anil Ufuk Batmaz

Abstract:

In Virtual Reality (VR) applications, interacting with distant objects relies heavily on mid-air object manipulation. However, the inherent distance between the user and the object often restricts precise movement capabilities. This paper introduces the Signed Distance Field (SDF) algorithm as a method for mid-air object manipulation, and combines it with the ray casting interaction technique to investigate its effect on user performance and user experience. To increase the accuracy of the movements, we leverage the speed-accuracy trade-off to dynamically adjust object manipulation speed based on the SDF algorithm's output. Our study, involving 18 participants, examines the effects of SDF across three different tasks with different complexities. Our results showed that ray casting with SDF reduces the number of errors in complex tasks without slowing down the participants. Further, our proposed method significantly improved the user experience for complex tasks. We hope that our proposed assistive system, designed for tasks and applications, can be used as an interaction technique to enable more accurate manipulation of distant objects in the fields like surgical planning, architecture, and games.

Date of publication: Oct - 2024
Get PDF Get Video Get Citation