Walking on inclined surfaces is common in some Virtual Reality (VR) scenarios, for instance when moving between floors of a building, climbing a tower, or ascending a virtual mountain. Existing approaches enabling realistic walking experiences in such settings typically require the user to use bulky walking-in-place hardware or to walk in a physical area. Addressing this challenge, we present RedirectedStepper, a locomotion technique leveraging a novel device based on a mini exercise stepper to provide realistic VR staircase walking experiences by alternating the tilt of the two stepper pedals. RedirectedStepper employs a new exponential mapping function to visually morph the user’s real foot motion to a corresponding curved path in the virtual environment (VE). Combining this stepper and the visual mapping function provides an in-place locomotion technique allowing users to virtually ascend an infinite staircase or slope while walking-in-place (WIP). We conducted three within-subject user studies (n=36) comparing RedirectedStepper with a WIP locomotion technique using the Kinect. Our studies indicate that RedirectedStepper improves the users’ sense of realism in walking on staircases in VR. Based on a set of design implications derived from the user studies, we developed SnowRun, a VR exergame application, demonstrating the use of the RedirectedStepper concept.